福建省漳州市2024年高一下數(shù)學期末調(diào)研模擬試題含解析_第1頁
福建省漳州市2024年高一下數(shù)學期末調(diào)研模擬試題含解析_第2頁
福建省漳州市2024年高一下數(shù)學期末調(diào)研模擬試題含解析_第3頁
福建省漳州市2024年高一下數(shù)學期末調(diào)研模擬試題含解析_第4頁
福建省漳州市2024年高一下數(shù)學期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省漳州市2024年高一下數(shù)學期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值為()A. B. C. D.2.已知函數(shù)的圖像關于直線對稱,則可能取值是().A. B. C. D.3.已知等差數(shù)列的前項之和為,前項和為,則它的前項的和為()A.B.C.D.4.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度5.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為11,乙組數(shù)據(jù)的中位數(shù)為9,則()A.6 B.5 C.4 D.36.在中,角的對邊分別為,已知,則的大小是()A. B. C. D.7.數(shù)列中,對于任意,恒有,若,則等于()A. B. C. D.8.若圓上至少有三個不同的點到直線的距離為,則直線的斜率的取值范圍是()A. B.C. D.9.已知向量若為實數(shù),則=()A.2 B.1 C. D.10.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本大題共6小題,每小題5分,共30分。11.方程的解集是___________12.已知數(shù)列的首項,其前項和為,且,若單調(diào)遞增,則的取值范圍是__________.13.已知,,,是球的球面上的四點,,,兩兩垂直,,且三棱錐的體積為,則球的表面積為______.14.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.15.在中,角,,的對邊分別為,,,若,則________.16.分形幾何學是美籍法國數(shù)學家伯努瓦.B.曼德爾布羅特在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),若,且,,求滿足條件的,.18.在中,內(nèi)角,,所對的邊分別為,,.若.(1)求角的度數(shù);(2)當時,求的取值范圍.19.已知向量,不是共線向量,,,(1)判斷,是否共線;(2)若,求的值20.已知圓的圓心在軸上,且經(jīng)過點,.(Ⅰ)求線段AB的垂直平分線方程;(Ⅱ)求圓的標準方程;(Ⅲ)過點的直線與圓相交于、兩點,且,求直線的方程.21.已知向量,,.(1)求(2)若與垂直,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】sin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯(lián)立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.2、D【解析】

根據(jù)正弦型函數(shù)的對稱性,可以得到一個等式,結(jié)合四個選項選出正確答案.【詳解】因為函數(shù)的圖像關于直線對稱,所以有,當時,,故本題選D.【點睛】本題考查了正弦型函數(shù)的對稱性,考查了數(shù)學運算能力.3、C【解析】試題分析:由于等差數(shù)列中也成等差數(shù)列,即成等差數(shù)列,所以,故選C.考點:等差數(shù)列前項和的性質(zhì).4、D【解析】

由圖象求得函數(shù)解析式的參數(shù),再利用誘導公式將異名函數(shù)化為同名函數(shù)根據(jù)圖象間平移方法求解.【詳解】由圖象可知,又,所以,又因為,所以,所以,又因為,又,所以所以又因為故選D.【點睛】本題考查由圖象確定函數(shù)的解析式和正弦函數(shù)和余弦函數(shù)圖象之間的平移,關鍵在于將異名函數(shù)化為同名函數(shù),屬于中檔題.5、D【解析】

由眾數(shù)就是出現(xiàn)次數(shù)最多的數(shù),可確定,題中中位數(shù)是中間兩個數(shù)的平均數(shù),這樣可計算出.【詳解】由甲組數(shù)據(jù)的眾數(shù)為11,得,乙組數(shù)據(jù)中間兩個數(shù)分別為6和,所以中位數(shù)是,得到,因此.故選:D.【點睛】本題考查眾數(shù)和中位數(shù)的概念,掌握眾數(shù)與中位數(shù)的定義是解題基礎.6、C【解析】∵,∴,又,∴,又為三角形的內(nèi)角,所以,故。選C。7、D【解析】因為,所以

,

.選D.8、C【解析】

作出圖形,設圓心到直線的距離為,利用數(shù)形結(jié)合思想可知,并設直線的方程為,利用點到直線的距離公式可得出關于的不等式,解出即可.【詳解】如下圖所示:設直線的斜率為,則直線的方程可表示為,即,圓心為,半徑為,由于圓上至少有三個不同的點到直線的距離為,所以,即,即,整理得,解得,因此,直線的斜率的取值范圍是.故選:C.【點睛】本題考查直線與圓的綜合問題,解題的關鍵就是確定圓心到直線距離所滿足的不等式,并結(jié)合點到直線的距離公式來求解,考查數(shù)形結(jié)合思想的應用,屬于中等題.9、D【解析】

求出向量的坐標,然后根據(jù)向量的平行得到所求值.【詳解】∵,∴.又,∴,解得.故選D.【點睛】本題考查向量的運算和向量共線的坐標表示,屬于基礎題.10、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】

方程的根等價于或,分別求兩個三角方程的根可得答案.【詳解】方程或,所以或,所以或.故答案為:或.【點睛】本題考查三角方程的求解,求解時可利用單位圓中的三角函數(shù)線,注意終邊相同角的表示,考查運算求解能力和數(shù)形結(jié)合思想的運用.12、【解析】由可得:兩式相減得:兩式相減可得:數(shù)列,,...是以為公差的等差數(shù)列,數(shù)列,,...是以為公差的等差數(shù)列將代入及可得:將代入可得要使得,恒成立只需要即可解得則的取值范圍是點睛:本題考查了數(shù)列的遞推關系求通項,在含有的條件中,利用來求通項,本題利用減法運算求出數(shù)列隔一項為等差數(shù)列,結(jié)合和數(shù)列為增數(shù)列求出結(jié)果,本題需要利用條件遞推,有一點難度.13、【解析】

根據(jù)三棱錐的體積可求三棱錐的側(cè)棱長,補體后可求三棱錐外接球的直徑,從而可計算外接球的表面積.【詳解】三棱錐的體積為,故,因為,,兩兩垂直,,故可把三棱錐補成正方體,該正方體的體對角線為三棱錐外接球的直徑,又體對角線的長度為,故球的表面積為.填.【點睛】幾何體的外接球、內(nèi)切球問題,關鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中.如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.14、【解析】

由拋物線的對稱性知A、B關于x軸對稱,設出它們的坐標,利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【詳解】∵拋物線關于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關系,是中檔題15、【解析】

利用余弦定理與不等式結(jié)合的思想求解,,的關系.即可求解的值.【詳解】解:根據(jù)①余弦定理②由①②可得:化簡:,,,,,,此時,故得,即,.故答案為:.【點睛】本題主要考查了存在性思想,余弦定理與不等式結(jié)合的思想,界限的利用.屬于中檔題.16、【解析】

觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【點睛】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關系,屬于中等題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、,【解析】

利用三角恒等變換,化簡的解析式,從而得出結(jié)論.【詳解】解:,∴,待定系數(shù),可得,又,∴,∴,.【點睛】本題主要考查三角恒等變換,屬于基礎題.18、(1);(2).【解析】

(1)根據(jù)余弦定理即可解決.(2)根據(jù)向量的三角形法則即可解決.【詳解】(1)因為,所以得,所以,所以,因為所以;(2)取的中點,則,,所以所以,從而由平行四邊形性質(zhì)有故.【點睛】本題主要考查了余弦定理以及向量的三角形法則,其中第二問用了完全平方以及加減消元的思想,是本題的一個難點.解決本題的關鍵是畫一個三角形結(jié)合三角形進行分析.19、(1)與不共線.(2)【解析】

(1)假設與共線,由此列方程組,解方程組判斷出與不共線.(2)根據(jù)兩個向量平行列方程組,解方程組求得的值.【詳解】解:(1)若與共線,由題知為非零向量,則有,即,∴得到且,∴不存在,即與不平行.(2)∵,則,即,即,解得.【點睛】本小題主要考查判斷兩個向量是否共線,考查根據(jù)兩個向量平行求參數(shù),屬于基礎題.20、(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】

(Ⅰ)利用垂直平分關系得到斜率及中點,從而得到結(jié)果;(Ⅱ)設圓的標準方程為,結(jié)合第一問可得結(jié)果;(Ⅲ)由題意可知:圓心到直線的距離為1,分類討論可得結(jié)果.【詳解】解:(Ⅰ)設的中點為,則.由圓的性質(zhì),得,所以,得.所以線段的垂直平分線的方程是.(II)設圓的標準方程為,其中,半徑為().由圓的性質(zhì),圓心在直線上,化簡得.所以圓心,,所以圓的標準方程為.(III)由(I)設為中點,則,得.圓心到直線的距離.(1)當?shù)男甭什淮嬖跁r,,此時,符合題意.(2)當?shù)男甭蚀嬖跁r,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論