上海市重點中學2023-2024學年數(shù)學高一下期末調(diào)研試題含解析_第1頁
上海市重點中學2023-2024學年數(shù)學高一下期末調(diào)研試題含解析_第2頁
上海市重點中學2023-2024學年數(shù)學高一下期末調(diào)研試題含解析_第3頁
上海市重點中學2023-2024學年數(shù)學高一下期末調(diào)研試題含解析_第4頁
上海市重點中學2023-2024學年數(shù)學高一下期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

上海市重點中學2023-2024學年數(shù)學高一下期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某小組有3名男生和2名女生,從中任選2名學生參加演講比賽,那么下列互斥但不對立的兩個事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”2.設的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.3.如圖,在正四棱錐中,,側(cè)面積為,則它的體積為()A.4 B.8 C. D.4.已知,且,,則()A. B. C. D.5.若數(shù)列滿足,,則()A. B. C.18 D.206.設為等比數(shù)列的前n項和,若,,成等差數(shù)列,則()A.,,成等差數(shù)列 B.,,成等比數(shù)列C.,,成等差數(shù)列 D.,,成等比數(shù)列7.若是等差數(shù)列,首項,,,則使前n項和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.40348.已知等差數(shù)列中,則()A.10 B.16 C.20 D.249.的值等于()A. B. C. D.10.化簡=()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則與的夾角等于___________.12.某學校高一年級舉行選課培訓活動,共有1024名學生、家長、老師參加,其中家長256人.學校按學生、家長、老師分層抽樣,從中抽取64人,進行某問卷調(diào)查,則抽到的家長有___人13.已知,均為銳角,,,則______.14.若直線與直線互相平行,那么a的值等于_____.15.已知函數(shù),若,則__________.16.執(zhí)行右邊的程序框圖,若輸入的是,則輸出的值是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,.(1)若,求的值;(2)設,若恒成立,求的取值范圍.18.在平面直角坐標系中,已知曲線的方程是(,).(1)當,時,求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點,,且,求點到直線距離的最小值.19.某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案(1)的概率;20.在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.(1)設總造價(元)表示為長度的函數(shù);(2)當取何值時,總造價最低,并求出最低總造價.21.設數(shù)列滿足(,),且,.(1)求和的值;(2)求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

從3名男生和2名女生中任選2名學生的所有結(jié)果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項A中的兩個事件為對立事件,故不正確;選項B中的兩個事件不是互斥事件,故不正確;選項C中的兩個事件不是互斥事件,故不正確;選項D中的兩個事件為互斥但不對立事件,故正確.選D.2、B【解析】

根據(jù)正弦定理,可得,進而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點睛】本題主要考查余弦定理及正弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).3、A【解析】

連交于,連,根據(jù)正四棱錐的定義可得平面,取中點,連,則由側(cè)面積和底面邊長,求出側(cè)面等腰三角形的高,在中,求出,即可求解.【詳解】連交于,連,取中點,連因為正四棱錐,則平面,,側(cè)面積,在中,,.故選:A.【點睛】本題考查正四棱錐結(jié)構(gòu)特征、體積和表面積,屬于基礎題.4、C【解析】

根據(jù)同角三角函數(shù)的基本關(guān)系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,兩角和差的正弦公式,屬于中檔題.5、A【解析】

首先根據(jù)題意得到:是以首項為,公差為的等差數(shù)列.再計算即可.【詳解】因為,所以是以首項為,公差為的等差數(shù)列.,.故選:A【點睛】本題主要考查等差數(shù)列的定義,熟練掌握等差數(shù)列的表達式是解題的關(guān)鍵,屬于簡單題.6、A【解析】

先說明不符合題意,由時,成等差數(shù)列,算得,然后用表示出來,即可得到本題答案.【詳解】設等比數(shù)列的公比為q,首項為,當時,有,不滿足成等差數(shù)列;當時,因為成等差數(shù)列,所以,即,化簡得,解得,所以,,,則成等差數(shù)列.故選:A【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合應用,計算出等比數(shù)列的公比是關(guān)鍵,考查計算能力,屬于中等題.7、D【解析】

由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項,,則,,則,,即使前n項和成立的最大正整數(shù),故選:D.【點睛】本題考查了等差數(shù)列的性質(zhì),重點考查了等差數(shù)列前項和公式,屬中檔題.8、C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.9、A【解析】=,選A.10、D【解析】

根據(jù)向量的加法與減法的運算法則,即可求解,得到答案.【詳解】由題意,根據(jù)向量的運算法則,可得=++==,故選D.【點睛】本題主要考查了向量的加法與減法的運算法則,其中解答中熟記向量的加法與減法的運算法則,準確化簡、運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用再結(jié)合已知條件即可求解【詳解】由,即,故答案為:【點睛】本題考查向量的夾角計算公式,在考題中應用廣泛,屬于中檔題12、16【解析】

利用分層抽樣的性質(zhì),直接計算,即可求得,得到答案.【詳解】由題意,可知共有1024名學生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進行某問卷調(diào)查,則抽到的家長人數(shù)為人.故答案為16【點睛】本題主要考查了分層抽樣的應用,其中解答中熟記分層抽樣的概念和性質(zhì),準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.13、【解析】

先求出,,再由,并結(jié)合兩角和與差的正弦公式求解即可.【詳解】由題意,可知,則,又,則,或者,因為為銳角,所以不成立,即成立,所以.故.故答案為:.【點睛】本題考查兩角和與差的正弦公式的應用,考查同角三角函數(shù)基本關(guān)系的應用,考查學生的計算求解能力,屬于中檔題.14、;【解析】由題意得,驗證滿足條件,所以15、【解析】

由三角函數(shù)的輔助角公式化簡,關(guān)鍵需得出輔助角的正切值,再由函數(shù)的最大值求解.【詳解】由三角函數(shù)的輔助公式得(其中),因為所以,所以,所以,,所以,故填:【點睛】本題考查三角函數(shù)的輔助角公式,屬于基礎題.16、24【解析】

試題分析:根據(jù)框圖的循環(huán)結(jié)構(gòu),依次;;;.跳出循環(huán)輸出.考點:算法程序框圖.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由,轉(zhuǎn)化為,利用弦化切的思想得出的值,從而求出的值;(2)由,轉(zhuǎn)化為,然后利用平面向量數(shù)量積的坐標運算律和輔助角公式與函數(shù)的解析式進行化簡,并求出在區(qū)間的最大值,即可得出實數(shù)的取值范圍.【詳解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,當時,,取得最大值:,又恒成立,即,故.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查三角函數(shù)的最值,在求解含參函數(shù)的不等式恒成立問題,可以利用參變量分離法,轉(zhuǎn)化為函數(shù)的最值來求解,考查轉(zhuǎn)化與化歸數(shù)學思想,考查計算能力,屬于中等題.18、(1)4;(2).【解析】

(1)當,時,曲線的方程是,對絕對值內(nèi)的數(shù)進行討論,得到四條直線圍成一個菱形,并求出面積為4;(2)對進行討論,化簡曲線方程,并與直線方程聯(lián)立,求出點的坐標,由得到的關(guān)系,再利用點到直線的距離公式求出,從而求得.【詳解】(1)當,時,曲線的方程是,當時,,當時,,當時,方程等價于,當時,方程等價于,當時,方程等價于,當時,方程等價于,曲線圍成的區(qū)域為菱形,其面積為;(2)當,時,有,聯(lián)立直線可得,當,時,有,聯(lián)立直線可得,由可得,即有,化為,點到直線距離,由題意可得,,,即,可得,,可得當,即時,點到直線距離取得最小值.【點睛】解析幾何的思想方法是坐標法,通過代數(shù)運算解決幾何問題,本題對運算能力的要求是比較高的.19、(1)0.4(2)【解析】

(1)從頻率分布直方圖中計算出前四組矩形面積之和,即為所求概率;(2)列舉出全部的基本事件,并確定出基本事件的總數(shù),然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數(shù),最后利用古典概型的概率公式可計算出結(jié)果?!驹斀狻浚?)設事件為“隨機選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于單”依題意,連鎖店的人均日快遞業(yè)務量不少于單的頻率分別為:因為所以估計為;(2)設事件為“從四名騎手中隨機選取2人,至少有1名騎手選擇方案(1)”從四名新聘騎手中隨機選取2名騎手,有6種情況,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名騎手選擇方案()的情況為{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以?!军c睛】本題考查頻率分布直方圖以及古典概型概率的計算,在頻率分布直方圖的問題中要注意:(1)每組矩形的面積等于該組數(shù)據(jù)的頻率;(2)所有矩形的面積之和為。20、(1),(2)當時,總造價最低為元【解析】

(1)根據(jù)題意得矩形的長為,則矩形的寬為,中間區(qū)域的長為,寬為列出函數(shù)即可.(2)根據(jù)(1)的結(jié)果利用基本不等式即可.【詳解】(1)由矩形的長為,則矩形的寬為,則中間區(qū)域的長為,寬為,則定義域為則整理得,(2)當且僅當時取等號,即所以當時,總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論