2023-2024學(xué)年山東省煙臺(tái)市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2023-2024學(xué)年山東省煙臺(tái)市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2023-2024學(xué)年山東省煙臺(tái)市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2023-2024學(xué)年山東省煙臺(tái)市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2023-2024學(xué)年山東省煙臺(tái)市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年山東省煙臺(tái)市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知三棱柱的底面為直角三角形,側(cè)棱長(zhǎng)為2,體積為1,若此三棱柱的頂點(diǎn)均在同一球面上,則該球半徑的最小值為()A.1 B.2 C. D.2.在區(qū)間上隨機(jī)地取一個(gè)數(shù).則的值介于0到之間的概率為().A. B. C. D.3.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.4.在△ABC中,角A、B、C所對(duì)的邊分別為,己知A=60°,,則B=()A.45° B.135° C.45°或135° D.以上都不對(duì)5.若,則下列不等式恒成立的是A. B. C. D.6.已知函數(shù)在一個(gè)周期內(nèi)的圖象如圖所示.則的圖象,可由函數(shù)的圖象怎樣變換而來(lái)(縱坐標(biāo)不變)()A.先把各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,再向左平移個(gè)單位B.先把各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,再向右平移個(gè)單位C.先把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再向左平移個(gè)單位D.先把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再向右平移個(gè)單位7.在中,,點(diǎn)是內(nèi)(包括邊界)的一動(dòng)點(diǎn),且,則的最大值是()A. B. C. D.8.等差數(shù)列中,,且,且,是其前項(xiàng)和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于9.在等差數(shù)列中,為其前n項(xiàng)和,若,則()A.60 B.75 C.90 D.10510.延長(zhǎng)正方形的邊至,使得.若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn),若,下列判斷正確的是()A.滿足的點(diǎn)必為的中點(diǎn)B.滿足的點(diǎn)有且只有一個(gè)C.的最小值不存在D.的最大值為二、填空題:本大題共6小題,每小題5分,共30分。11.過(guò)點(diǎn)作圓的切線,則切線的方程為_____.12.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.13.等比數(shù)列的首項(xiàng)為,公比為q,,則首項(xiàng)的取值范圍是____________.14.已知空間中的三個(gè)頂點(diǎn)的坐標(biāo)分別為,則BC邊上的中線的長(zhǎng)度為________.15.下列說(shuō)法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認(rèn)為正確的序號(hào)全部寫上)16.設(shè)向量是兩個(gè)不共線的向量,若與共線,則_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,三個(gè)內(nèi)角所對(duì)的邊分別為,滿足.(1)求角的大小;(2)若,求,的值.(其中)18.的內(nèi)角,,的對(duì)邊分別為,,,為邊上一點(diǎn),為的角平分線,,.(1)求的值:(2)求面積的最大值.19.已知函數(shù)的值域?yàn)锳,.(1)當(dāng)?shù)臑榕己瘮?shù)時(shí),求的值;(2)當(dāng)時(shí),在A上是單調(diào)遞增函數(shù),求的取值范圍;(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取得最小值,試探討應(yīng)該滿足的條件.20.已知函數(shù),求其定義域.21.己知向量,,設(shè)函數(shù),且的圖象過(guò)點(diǎn)和點(diǎn).(1)當(dāng)時(shí),求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若在有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

先證明棱柱為直棱柱,再求出棱柱外接球的半徑,利用基本不等式求出其最小值.【詳解】∵三棱柱內(nèi)接于球,∴棱柱各側(cè)面均為平行四邊形且內(nèi)接于圓,所以棱柱的側(cè)棱都垂直底面,所以該三棱柱為直三棱柱.設(shè)底面三角形的兩條直角邊長(zhǎng)為,,∵三棱柱的高為2,體積是1,∴,即,將直三棱柱補(bǔ)成一個(gè)長(zhǎng)方體,則直三棱柱與長(zhǎng)方體有同一個(gè)外接球,所以球的半徑為.故選D【點(diǎn)睛】本題主要考查幾何體外接球的半徑的計(jì)算和基本不等式求最值,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.2、D【解析】

由,得.由函數(shù)的圖像知,使的值介于0到之間的落在和之內(nèi).于是,所求概率為.故答案為D3、C【解析】

由題,連接,設(shè)其交平面于點(diǎn)易知平面,即(或其補(bǔ)角)為與平面所成的角,再利用等體積法求得AO的長(zhǎng)度,即可求得的長(zhǎng)度,可得結(jié)果.【詳解】設(shè)正方體的邊長(zhǎng)為1,如圖,連接,設(shè)其交平面于點(diǎn),則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補(bǔ)角)為與平面所成的角.在中,.故選C.【點(diǎn)睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關(guān)鍵,求高的長(zhǎng)度會(huì)用到等體積法,屬于中檔題.4、A【解析】

利用正弦定理求出的值,再結(jié)合,得出,從而可得出的值。【詳解】由正弦定理得,,,則,所以,,故選:A?!军c(diǎn)睛】本題考查利用正弦定理解三角形,要注意正弦定理所適用的基本情形,同時(shí)在求得角時(shí),利用大邊對(duì)大角定理或兩角之和不超過(guò)得出合適的答案,考查計(jì)算能力,屬于中等題。5、D【解析】∵∴設(shè)代入可知均不正確對(duì)于,根據(jù)冪函數(shù)的性質(zhì)即可判斷正確故選D6、B【解析】

根據(jù)圖象可知,根據(jù)周期為知,過(guò)點(diǎn)求得,函數(shù)解析式,比較解析式,根據(jù)圖像變換規(guī)律即可求解.【詳解】由在一個(gè)周期內(nèi)的圖象可得,,解得,圖象過(guò)點(diǎn),代入解析式得,因?yàn)?,所以,故,因?yàn)?,將函?shù)圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的得,再向右平移個(gè)單位得的圖象,故選B.【點(diǎn)睛】本題主要考查了由部分圖像求解析式,圖象變換規(guī)律,屬于中檔題.7、B【解析】

根據(jù)分析得出點(diǎn)的軌跡為線段,結(jié)合圖形即可得到的最大值.【詳解】如圖:取,,,點(diǎn)是內(nèi)(包括邊界)的一動(dòng)點(diǎn),且,根據(jù)平行四邊形法則,點(diǎn)的軌跡為線段,則的最大值是,在中,,,,,故選:B【點(diǎn)睛】此題考查利用向量方法解決平面幾何中的線段長(zhǎng)度最值問(wèn)題,數(shù)形結(jié)合處理可以避免純粹的計(jì)算,降低難度.8、C【解析】

由,且可得,,,,結(jié)合等差數(shù)列的求和公式即等差數(shù)列的性質(zhì)即可判斷.【詳解】,且,,數(shù)列的前項(xiàng)都是負(fù)數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和符號(hào)的判斷,解題時(shí)要充分結(jié)合等差數(shù)列下標(biāo)和的性質(zhì)以及等差數(shù)列求和公式進(jìn)行計(jì)算,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.9、B【解析】

由條件,利用等差數(shù)列下標(biāo)和性質(zhì)可得,進(jìn)而得到結(jié)果.【詳解】,即,而,故選B.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查運(yùn)算能力與推理能力,屬于中檔題.10、D【解析】試題分析:設(shè)正方形的邊長(zhǎng)為1,建立如圖所示直角坐標(biāo)系,則的坐標(biāo)為,則設(shè),由得,所以,當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;由以上討論可知,當(dāng)時(shí),可為的中點(diǎn),也可以是點(diǎn),所以A錯(cuò);使的點(diǎn)有兩個(gè),分別為點(diǎn)與中點(diǎn),所以B錯(cuò),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),有最小值,故C錯(cuò),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),有最大值,所以D正確,故選D.考點(diǎn):向量的坐標(biāo)運(yùn)算.【名師點(diǎn)睛】本題考查平面向量線性運(yùn)算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標(biāo)化是聯(lián)系圖形與代數(shù)運(yùn)算的渠道,通過(guò)構(gòu)建直角坐標(biāo)系,使得向量運(yùn)算完全代數(shù)化,通過(guò)加、減、數(shù)乘的運(yùn)算法則,實(shí)現(xiàn)了數(shù)形的緊密結(jié)合,同時(shí)將參數(shù)的取值范圍問(wèn)題轉(zhuǎn)化為求目標(biāo)函數(shù)的取值范圍問(wèn)題,在解題過(guò)程中,還常利用向量相等則坐標(biāo)相同這一原則,通過(guò)列方程(組)求解,體現(xiàn)方程思想的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】

求出圓的圓心與半徑分別為:,,分別設(shè)出直線斜率存在與不存在情況下的直線方程,利用點(diǎn)到直線的距離等于半徑即可得到答案.【詳解】由圓的一般方程得到圓的圓心和半徑分別為;,;(1)當(dāng)過(guò)點(diǎn)的切線斜率不存在時(shí),切線方程為:,此時(shí)圓心到直線的距離,故不與圓相切,不滿足題意;(2)當(dāng)過(guò)點(diǎn)的切線的斜率存在時(shí),設(shè)切線方程為:,即為;由于直線與圓相切,所以圓心到切線的距離等于半徑,即,解得:或,所以切線的方程為或;綜述所述:切線的方程或【點(diǎn)睛】本題考查過(guò)圓外一點(diǎn)求圓的切線方程,解題關(guān)鍵是設(shè)出切線方程,利用圓心到切線的距離等于半徑得到關(guān)系式,屬于中檔題.12、【解析】

取中點(diǎn),中點(diǎn),易得面,再求出到平面的距離,進(jìn)而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【詳解】如圖,取中點(diǎn),中點(diǎn),連接.因?yàn)?,所以.因?yàn)?,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因?yàn)?所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【點(diǎn)睛】本題主要考查了空間中線面垂直的性質(zhì)與運(yùn)用,同時(shí)也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點(diǎn)到面的距離求解,再求出線面的夾角.屬于難題.13、【解析】

由題得,利用即可得解【詳解】由題意知,,可得,又因?yàn)?,所以可求?故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式其前n項(xiàng)和公式、數(shù)列極限的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于中檔題.14、【解析】

先求出BC的中點(diǎn),由此能求出BC邊上的中線的長(zhǎng)度.【詳解】解:因?yàn)榭臻g中的三個(gè)頂點(diǎn)的坐標(biāo)分別為,所以BC的中點(diǎn)為,所以BC邊上的中線的長(zhǎng)度為:,故答案為:.【點(diǎn)睛】本題考查三角形中中線長(zhǎng)的求法,考查中點(diǎn)坐標(biāo)公式、兩點(diǎn)間距離的求法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.15、③④【解析】

①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開后利用基本不等式可求出的最小值,進(jìn)而判斷出該命題的正誤?!驹斀狻竣儆傻?,則,則,設(shè),則,則,則上減函數(shù),則上為增函數(shù),則時(shí),取得最小值,當(dāng)時(shí),,故的最大值為,錯(cuò)誤;②若,則函數(shù),則,即函數(shù)的最大值為,無(wú)最小值,故錯(cuò)誤;③若,滿足,則,則,由,得,則,當(dāng)且僅當(dāng),即得,即時(shí)取等號(hào),即的最小值為,故③正確;④,當(dāng)且僅當(dāng),即,即時(shí),取等號(hào),即函數(shù)的最小值為,故④正確,故答案為:③④?!军c(diǎn)睛】本題考查利用基本不等式來(lái)判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個(gè)條件,同時(shí)注意結(jié)合雙勾函數(shù)單調(diào)性來(lái)考查,屬于中等題。16、【解析】試題分析:∵向量,是兩個(gè)不共線的向量,不妨以,為基底,則,又∵共線,.考點(diǎn):平面向量與關(guān)系向量三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)4,6【解析】

(1)已知等式利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),求出的值,即可確定出的度數(shù);(2)根據(jù)平面向量數(shù)量積的運(yùn)算法則計(jì)算得到一個(gè)等式,記作①,把的度數(shù)代入求出的值,記作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相應(yīng)的值代入,開方求出的值,由②③可知與為一個(gè)一元二次方程的兩個(gè)解,求出方程的解,根據(jù)大于,可得出,的值.【詳解】(1)已知等式,利用正弦定理化簡(jiǎn)得,整理得,即,,則.(2)由,得,①又由(1),②由余弦定理得,將及①代入得,,,③由②③可知與為一個(gè)一元二次方程的兩個(gè)根,解此方程,并由大于,可得.【點(diǎn)睛】以三角形和平面向量為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對(duì)三角函數(shù)及解三角形進(jìn)行考查是近幾年高考考查的一類熱點(diǎn)問(wèn)題,一般難度不大,但綜合性較強(qiáng).解答這類問(wèn)題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.18、(1)(2)3【解析】

(1)由,,根據(jù)三角形面積公式可知,,再根據(jù)角平分線的定義可知,到,的距離相等,所以,即可求出;(2)先根據(jù)(1)可得,,由平方關(guān)系得,再根據(jù)三角形的面積公式,可化簡(jiǎn)得,然后根據(jù)基本不等式即可求出面積的最大值.【詳解】(1)如圖所示:因?yàn)椋裕忠驗(yàn)闉榈慕瞧椒志€,所以到,的距離相等,所以所以.(2)由(1)及余弦定理得:所以,又因?yàn)樗?,所以又因?yàn)榍遥仕?,?dāng)且僅當(dāng)即時(shí)取等號(hào).所以面積的最大值為.【點(diǎn)睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,以及利用基本不等式求最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.19、(1);(2);(3).【解析】

(1)由函數(shù)為偶函數(shù),可得,故,由此可得的值.(2)化簡(jiǎn)函數(shù),求出,化簡(jiǎn),由題意可知:,由此可得的取值范圍.(3)由條件得,再由,,可得.由的圖象關(guān)于點(diǎn),對(duì)稱求得,可得.再由的圖象關(guān)于直線成軸對(duì)稱,所以,可得,,由此求得滿足的條件.【詳解】解:(1)因?yàn)楹瘮?shù)為偶函數(shù),所以,得對(duì)恒成立,即,所以.(2),即,,由題意可知:得,∴.(3)又∵,,,不妨設(shè),,則,其中,由函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,在處取得最小值得,即,故.【點(diǎn)睛】本題主要考查三角函數(shù)的奇偶性,單調(diào)性和對(duì)稱性的綜合應(yīng)用,屬于中檔題.20、【解析】

由使得分式和偶次根式有意義的要求可得到一元二次不等式,解不等式求得結(jié)果.【詳解】由題意得:,即,解得:定義域?yàn)椤军c(diǎn)睛】本題考查具體函數(shù)定義域的求解問(wèn)題,關(guān)鍵是明確使得分式和偶次根式有意義的基本要求,由此構(gòu)造不等式求得結(jié)果.21、(1)最大值為2,此時(shí);最小值為-1,此時(shí).(2)【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論