版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省安陽市三十六中2023-2024學年數(shù)學高一下期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知且,則的取值范圍是()A. B. C. D.2.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.3.若直線與直線平行,則A. B. C. D.4.用數(shù)學歸納法證明這一不等式時,應注意必須為()A. B., C., D.,5.若角的終邊經(jīng)過點,則()A. B. C. D.6.不等式的解集為A. B. C. D.7.某學生四次模擬考試時,其英語作文的減分情況如下表:考試次數(shù)x
1
2
3
4
所減分數(shù)y
4.5
4
3
2.5
顯然所減分數(shù)y與模擬考試次數(shù)x之間有較好的線性相關關系,則其線性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.258.當前,我省正分批修建經(jīng)濟適用房以解決低收入家庭住房緊張問題.已知甲、乙、丙三個社區(qū)現(xiàn)分別有低收入家庭360戶、270戶、180戶,若第一批經(jīng)濟適用房中有90套住房用于解決這三個社區(qū)中90戶低收入家庭的住房問題,先采用分層抽樣的方法決定各社區(qū)戶數(shù),則應從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.30 B.40 C.20 D.369.數(shù)列,,,,,,的一個通項公式為()A. B.C. D.10.數(shù)列{an}中a1=﹣2,an+1=1,則a2019的值為()A.﹣2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若一組樣本數(shù)據(jù),,,,的平均數(shù)為,則該組樣本數(shù)據(jù)的方差為12.若數(shù)列滿足,,則______.13.若6是-2和k的等比中項,則______.14.直線在軸上的截距是__________.15.已知曲線與直線交于A,B兩點,若直線OA,OB的傾斜角分別為、,則__________16.等差數(shù)列前9項的和等于前4項的和.若,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內角所對邊分別為,已知.(1)求;(2)若,,求的面積.18.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內接矩形CDEF.(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設;(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設;試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?19.已知函數(shù),.(1)求函數(shù)的單調減區(qū)間;(2)若存在,使等式成立,求實數(shù)的取值范圍.20.已知,.(1)求的值;(2)若,均為銳角,求的值.21.已知函數(shù),是公差為的等差數(shù)列,是公比為的等比數(shù)列.且,,,.(1)分別求數(shù)列、的通項公式;(2)已知數(shù)列滿足:,求數(shù)列的通項公式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】分析:,由,可得,又,可得,化簡整理即可得出.詳解:,由,可得,又,可得,化為,解得,則的取值范圍是.故選:A.點睛:本題考查了基本不等式的性質、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.2、D【解析】,當時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.
故選D.【點睛】本題考查三角函數(shù)恒等變換,其中解題時問題轉化為求三角函數(shù)的值域并利用集合關系是解決問題的關鍵,3、A【解析】由題意,直線,則,解得,故選A.4、D【解析】
根據(jù)題意驗證,,時,不等式不成立,當時,不等式成立,即可得出答案.【詳解】解:當,,時,顯然不等式不成立,當時,不等式成立,故用數(shù)學歸納法證明這一不等式時,應注意必須為,故選:.【點睛】本題考查數(shù)學歸納法的應用,屬于基礎題.5、B【解析】
根據(jù)任意角的三角函數(shù)的定義,可以直接求到本題答案.【詳解】因為點在角的終邊上,所以.故選:B【點睛】本題主要考查利用任意角的三角函數(shù)的定義求值.6、D【解析】
把不等式化為,即可求解不等式的解集,得到答案.【詳解】由題意,不等式可化為,解得或,即不等式的解集為,故選D.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、D【解析】試題分析:先求樣本中心點,利用線性回歸方程一定過樣本中心點,代入驗證,可得結論.解:先求樣本中心點,,由于線性回歸方程一定過樣本中心點,代入驗證可知y=﹣0.7x+5.25,滿足題意故選D.點評:本題考查線性回歸方程,解題的關鍵是利用線性回歸方程一定過樣本中心點,屬于基礎題.8、A【解析】
先求出每個個體被抽到的概率,再由乙社區(qū)的低收入家庭數(shù)量乘以每個個體被抽到的概率,即可求解【詳解】每個個體被抽到的概率為,乙社區(qū)由270戶低收入家庭,故應從乙中抽取低收入家庭的戶數(shù)為,故選:A【點睛】本題考查分層抽樣的應用,屬于基礎題9、C【解析】
首先注意到數(shù)列的奇數(shù)項為負,偶數(shù)項為正,其次數(shù)列各項絕對值構成一個以1為首項,以2為公差的等差數(shù)列,從而易求出其通項公式.【詳解】∵數(shù)列{an}各項值為,,,,,,∴各項絕對值構成一個以1為首項,以2為公差的等差數(shù)列,∴|an|=2n﹣1又∵數(shù)列的奇數(shù)項為負,偶數(shù)項為正,∴an=(﹣1)n(2n﹣1).故選:C.【點睛】本題給出數(shù)列的前幾項,猜想數(shù)列的通項,挖掘其規(guī)律是關鍵.解題時應注意數(shù)列的奇數(shù)項為負,偶數(shù)項為正,否則會錯.10、B【解析】
根據(jù)遞推公式,算出即可觀察出數(shù)列的周期為3,根據(jù)周期即可得結果.【詳解】解:由已知得,,,
,…,,
所以數(shù)列是以3為周期的周期數(shù)列,故,
故選:B.【點睛】本題考查遞推數(shù)列的直接應用,難度較易.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為該組樣本數(shù)據(jù)的平均數(shù)為2017,所以,解得,則該組樣本數(shù)據(jù)的方差為.12、【解析】
利用遞推公式再遞推一步,得到一個新的等式,兩個等式相減,再利用累乘法可求出數(shù)列的通項公式,利用所求的通項公式可以求出的值.【詳解】得,,所以有,因此.故答案為:【點睛】本題考查了利用遞推公式求數(shù)列的通項公式,考查了累乘法,考查了數(shù)學運算能力.13、-18【解析】
根據(jù)等比中項的性質,列出等式可求得結果.【詳解】由等比中項的性質可得,,得.故答案為:-18【點睛】本題主要考查等比中項的性質,屬于基礎題.14、【解析】
把直線方程化為斜截式,可得它在軸上的截距.【詳解】解:直線,即,故它在軸上的截距是4,故答案為:.【點睛】本題主要考查直線方程的幾種形式,屬于基礎題.15、【解析】
曲線即圓曲線的上半部分,因為圓是單位圓,所以,,,,聯(lián)立曲線與直線方程,消元后根據(jù)韋達定理與直線方程代入即可求解.【詳解】由消去得,則,由三角函數(shù)的定義得故.【點睛】本題主要考查三角函數(shù)的定義,直線與圓的應用.此題關鍵在于曲線的識別與三角函數(shù)定義的應用.16、10【解析】
根據(jù)等差數(shù)列的前n項和公式可得,結合等差數(shù)列的性質即可求得k的值.【詳解】因為,且所以由等差數(shù)列性質可知因為所以則根據(jù)等差數(shù)列性質可知可得【點睛】本題考查了等差數(shù)列的前n項和公式,等差數(shù)列性質的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)5.【解析】
(1)根據(jù)正弦定理得,化簡即得C的值;(2)先利用余弦定理求出a的值,再求的面積.【詳解】(1)因為,根據(jù)正弦定理得,又,從而,由于,所以.(2)根據(jù)余弦定理,而,,,代入整理得,解得或(舍去).故的面積為.【點睛】本題主要考查正弦余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.18、方式一最大值【解析】
試題分析:(1)運用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當選擇公式進行變形;(3)把形如化為,可進一步研究函數(shù)的周期、單調性、最值和對稱性.試題解析:解(1)在中,設,則又當即時,(Ⅱ)令與的交點為,的交點為,則,于是,又當即時,取得最大值.,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:考點:把實際問題轉化為三角函數(shù)求最值問題.19、(1),.(2)【解析】
(1)利用降次公式和輔助角公式化簡表達式,根據(jù)三角函數(shù)單調區(qū)間的求法,求得函數(shù)的單調減區(qū)間.(2)首先求得當時的值域.利用換元法令,將轉化為,根據(jù)的范圍,結合二次函數(shù)的性質,求得的取值范圍.【詳解】(1)由()解得().所以所求函數(shù)的單調減區(qū)間是,.(2)當時,,,即.令(),則關于的方程在上有解,即關于的方程在上有解.當時,.所以,則.因此所求實數(shù)的取值范圍是.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調區(qū)間的求法,考查根據(jù)方程的根存在求參數(shù)的取值范圍,考查二次函數(shù)的性質,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.20、(1)(2)【解析】
(1)利用誘導公式可得的值,再利用兩角和的正且公式可求得的值.
(2)先判斷角的范圍,再求的值,可求得的值.【詳解】(1).,可得:(2)由,均為銳角,由(1)所以,所以所以【點睛】本題考查三角函數(shù)的誘導公式和角變換的應用,考查知值求值和角,屬于中檔題.21、(1),;(2).【解析】
(1)根據(jù)題意分別列出關于、的方程,求出這兩個量,然后分別求出數(shù)列、的首項,再利用等差數(shù)列和等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能化施工合同智慧校園建設
- 建筑通風預付款保證合同
- 2024幼兒園幼兒舞蹈培訓與演出合作合同范本3篇
- 童裝童鞋訂貨合同
- 2024建筑工程施工合同標的與工程量清單
- 建筑設計公司公關部聘用合同
- 水利水電施工合同范本
- 2024民間借款合同汽車抵押貸款合同書編制指南3篇
- 城市廣場堡坎施工合同
- 保險行業(yè)運營總監(jiān)招聘合同
- 鋼結構網(wǎng)架驗收施工質量自評報告-副本
- 《修心三不 不生氣 不計較 不抱怨》讀書筆記思維導圖
- 妊娠劇吐的護理查房
- 《零食連鎖品牌合營銷研究12000字(論文)》
- 2023年陜西領導干部任前廉政考試題庫
- 普通高等學校學生轉學申請(備案)表
- GB/T 5782-2016六角頭螺栓
- GB/T 3811-2008起重機設計規(guī)范
- GB/T 36127-2018玉雕制品工藝質量評價
- 酒店電梯維護保養(yǎng)記錄表
- CB/T 615-1995船底吸入格柵
評論
0/150
提交評論