貴州省黔東南、黔南、黔西南中考一模數(shù)學試題及答案解析_第1頁
貴州省黔東南、黔南、黔西南中考一模數(shù)學試題及答案解析_第2頁
貴州省黔東南、黔南、黔西南中考一模數(shù)學試題及答案解析_第3頁
貴州省黔東南、黔南、黔西南中考一模數(shù)學試題及答案解析_第4頁
貴州省黔東南、黔南、黔西南中考一模數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省黔東南、黔南、黔西南中考一模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.2.如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.3.如果實數(shù)a=,且a在數(shù)軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.4.已知一次函數(shù)y=ax﹣x﹣a+1(a為常數(shù)),則其函數(shù)圖象一定過象限()A.一、二 B.二、三 C.三、四 D.一、四5.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.136.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=27.如圖,已知,,則的度數(shù)為()A. B. C. D.8.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.9.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.510.一組數(shù)據(jù)是4,x,5,10,11共五個數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.1111.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠112.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.廊橋是我國古老的文化遺產.如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-140x14.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.15.在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結果用含有a,b,c的式子表示)16.用一張扇形紙片圍成一個圓錐的側面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.17.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.18.如果兩個相似三角形對應邊上的高的比為1:4,那么這兩個三角形的周長比是___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出,;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?20.(6分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.21.(6分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:該年級報名參加丙組的人數(shù)為;該年級報名參加本次活動的總人數(shù),并補全頻數(shù)分布直方圖;根據(jù)實際情況,需從甲組抽調部分同學到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應從甲組抽調多少名學生到丙組?22.(8分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.(1)求m的值及一次函數(shù)解析式;(2)P是線段AB上的一點,連接PC、PD,若△PCA和△PDB面積相等,求點P坐標.23.(8分)某科技開發(fā)公司研制出一種新型產品,每件產品的成本為2500元,銷售單價定為3200元.在該產品的試銷期間,為了促銷,鼓勵商家購買該新型品,公司決定商家一次購買這種新型產品不超過10件時,每件按3200元銷售:若一次購買該種產品超過10件時,每多購買一件,所購買的全部產品的銷售單價均降低5元,但銷售單價均不低于2800元.商家一次購買這種產品多少件時,銷售單價恰好為2800元?設商家一次購買這種產品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當商家一次購買產品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)24.(10分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設OP=AC,求∠CPO的正弦值;(3)設AC=9,AB=15,求d+f的取值范圍.25.(10分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉一個角α(α=∠BCD),得到對應線段CF.(1)求證:BE=DF;(2)當t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?26.(12分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF與DE交于點G,求證:GE=GF.27.(12分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當FH=,DM=4時,求DH的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題解析:左視圖如圖所示:故選C.2、D【解析】

求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據(jù)三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【點睛】本題考查了三角形的三邊關系定理和用待定系數(shù)法求一次函數(shù)的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.3、C【解析】分析:估計的大小,進而在數(shù)軸上找到相應的位置,即可得到答案.詳解:由被開方數(shù)越大算術平方根越大,即故選C.點睛:考查了實數(shù)與數(shù)軸的的對應關系,以及估算無理數(shù)的大小,解決本題的關鍵是估計的大小.4、D【解析】分析:根據(jù)一次函數(shù)的圖形與性質,由一次函數(shù)y=kx+b的系數(shù)k和b的符號,判斷所過的象限即可.詳解:∵y=ax﹣x﹣a+1(a為常數(shù)),∴y=(a-1)x-(a-1)當a-1>0時,即a>1,此時函數(shù)的圖像過一三四象限;當a-1<0時,即a<1,此時函數(shù)的圖像過一二四象限.故其函數(shù)的圖像一定過一四象限.故選D.點睛:此題主要考查了一次函數(shù)的圖像與性質,利用一次函數(shù)的圖像與性質的關系判斷即可.一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質:當k>0,b>0時,圖像過一二三象限,y隨x增大而增大;當k>0,b<0時,圖像過一三四象限,y隨x增大而增大;當k<0,b>0時,圖像過一二四象限,y隨x增大而減??;當k<0,b<0,圖像過二三四象限,y隨x增大而減小.5、A【解析】

由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.6、B【解析】

根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.7、B【解析】分析:根據(jù)∠AOC和∠BOC的度數(shù)得出∠AOB的度數(shù),從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關系是解題的關鍵.8、A【解析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.9、D【解析】

①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質、等腰三角形的性質、直角三角形30度角的性質、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質,證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.10、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點:3.眾數(shù);3.算術平均數(shù).11、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.12、C【解析】

根據(jù)非負數(shù)的性質可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、85【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|14、4【解析】

連接把兩部分的面積均可轉化為規(guī)則圖形的面積,不難發(fā)現(xiàn)兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規(guī)則圖形的面積轉化為規(guī)則圖形的面積是解題的關鍵.15、2a+12b【解析】如圖2,翻折4次時,左側邊長為c,如圖2,翻折5次,左側邊長為a,所以翻折4次后,如圖1,由折疊得:AC=A===,所以圖形的周長為:a+c+5b,因為∠ABC<20°,所以,翻折9次后,所得圖形的周長為:2a+10b,故答案為:2a+10b.16、1【解析】

設這個圓錐的母線長為xcm,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設這個圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.17、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41818、1:4【解析】∵兩個相似三角形對應邊上的高的比為1∶4,∴這兩個相似三角形的相似比是1:4∵相似三角形的周長比等于相似比,∴它們的周長比1:4,故答案為:1:4.【點睛】本題考查了相似三角形的性質,相似三角形對應邊上的高、相似三角形的周長比都等于相似比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)100,35;(2)補全圖形,如圖;(3)800人【解析】

(1)由共享單車人數(shù)及其百分比求得總人數(shù)m,用支付寶人數(shù)除以總人數(shù)可得百分比n的值;(2)總人數(shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總人數(shù)求得百分比即可補全兩個圖形;(3)總人數(shù)乘以樣本中微信人數(shù)所占的百分比可得答案.【詳解】解:(1)∵被調查總人數(shù)為m=10÷10%=100人,∴用支付寶人數(shù)所占百分比n%=,∴m=100,n=35.(2)網(wǎng)購人數(shù)為100×15%=15人,微信人數(shù)所占百分比為,補全圖形如圖:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數(shù)為2000×40%=800人.【點睛】本題考查條形統(tǒng)計圖和扇形統(tǒng)計圖的信息關聯(lián)問題,樣本估計總體問題,從不同的統(tǒng)計圖得到必要的信息是解決問題的關鍵.20、(1)3+【解析】

(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.

(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質、直角三角形斜邊中線定理,等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.21、(1)21人;(2)10人,見解析(3)應從甲抽調1名學生到丙組【解析】(1)參加丙組的人數(shù)為21人;(2)21÷10%=10人,則乙組人數(shù)=10-21-11=10人,如圖:(3)設需從甲組抽調x名同學到丙組,根據(jù)題意得:3(11-x)=21+x解得x=1.答:應從甲抽調1名學生到丙組(1)直接根據(jù)條形統(tǒng)計圖獲得數(shù)據(jù);(2)根據(jù)丙組的21人占總體的10%,即可計算總體人數(shù),然后計算乙組的人數(shù),補全統(tǒng)計圖;(3)設需從甲組抽調x名同學到丙組,根據(jù)丙組人數(shù)是甲組人數(shù)的3倍列方程求解22、(1)m=2;y=x+;(2)P點坐標是(﹣,).【解析】

(1)利用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式;

(2)設點P的坐標為根據(jù)面積公式和已知條件列式可求得的值,并根據(jù)條件取舍,得出點P的坐標.【詳解】解:(1)∵反比例函數(shù)的圖象過點∴∵點B(﹣1,m)也在該反比例函數(shù)的圖象上,∴﹣1?m=﹣2,∴m=2;設一次函數(shù)的解析式為y=kx+b,由y=kx+b的圖象過點A,B(﹣1,2),則解得:∴一次函數(shù)的解析式為(2)連接PC、PD,如圖,設∵△PCA和△PDB面積相等,∴解得:∴P點坐標是【點睛】本題考查待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握待定系數(shù)法是解題的關鍵.23、(1)商家一次購買這種產品1件時,銷售單價恰好為2800元;(2)當0≤x≤10時,y=700x,當10<x≤1時,y=﹣5x2+750x,當x>1時,y=300x;(3)公司應將最低銷售單價調整為2875元.【解析】

(1)設件數(shù)為x,則銷售單價為3200-5(x-10)元,根據(jù)銷售單價恰好為2800元,列方程求解;(2)由利潤y=(銷售單價-成本單價)×件數(shù),及銷售單價均不低于2800元,按0≤x≤10,10<x≤50兩種情況列出函數(shù)關系式;(3)由(2)的函數(shù)關系式,利用二次函數(shù)的性質求利潤的最大值,并求出最大值時x的值,確定銷售單價.【詳解】(1)設商家一次購買這種產品x件時,銷售單價恰好為2800元.由題意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次購買這種產品1件時,銷售單價恰好為2800元;(2)設商家一次購買這種產品x件,開發(fā)公司所獲的利潤為y元,由題意得:當0≤x≤10時,y=(3200﹣2500)x=700x,當10<x≤1時,y=[3200﹣5(x﹣10)﹣2500]?x=﹣5x2+750x,當x>1時,y=(2800﹣2500)?x=300x;(3)因為要滿足一次購買數(shù)量越多,所獲利潤越大,所以y隨x增大而增大,函數(shù)y=700x,y=300x均是y隨x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75時,y隨x增大而增大.由上述分析得x的取值范圍為:10<x≤75時,即一次購買75件時,恰好是最低價,最低價為3200﹣5?(75﹣10)=2875元,答:公司應將最低銷售單價調整為2875元.【點睛】本題考查了一次、二次函數(shù)的性質在實際生活中的應用.最大銷售利潤的問題常利二次函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結合實際選擇最優(yōu)方案.24、(1)詳見解析;(2);(3)【解析】

(1)連接OC,根據(jù)等腰三角形的性質得到∠A=∠OCA,由平行線的性質得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質得到∠OBP=90°,根據(jù)全等三角形的性質即可得到結論;

(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結論;

(3)連接BC,根據(jù)勾股定理得到BC==12,當M與A重合時,得到d+f=12,當M與B重合時,得到d+f=9,于是得到結論.【詳解】(1)連接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切線,AB是⊙O的直徑,

∴∠OBP=90°,

在△POC與△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切線;

(2)過O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD?OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP?OP=OC2

∴,

∴sin∠CPO=;

(3)連接BC,

∵AB是⊙O的直徑,

∴AC⊥BC,

∵AC=9,AB=1,

∴BC==12,

當CM⊥AB時,

d=AM,f=BM,

∴d+f=AM+BM=1,

當M與B重合時,

d=9,f=0,

∴d+f=9,

∴d+f的取值范圍是:9≤d+f≤1.【點睛】本題考查了切線的判定和性質,全等三角形的判定和性質,相似三角形的判定和性質,平行線的性質,圓周角定理,正確的作出輔助線是解題的關鍵.25、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時,△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當∠EQP=90°時,如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論