河北省重點中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
河北省重點中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
河北省重點中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
河北省重點中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
河北省重點中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省重點中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.直線的斜率為()A. B. C. D.3.直線的斜率是()A. B.13 C.0 D.4.在中,角所對的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個數(shù)不確定5.在等差數(shù)列中,若,則()A.45 B.75 C.180 D.3206.四邊形,,,,則的外接圓與的內(nèi)切圓的公共弦長()A. B. C. D.7.已知為角終邊上一點,且,則()A. B. C. D.8.已知,所在平面內(nèi)一點P滿足,則()A. B. C. D.9.已知點,點滿足線性約束條件O為坐標原點,那么的最小值是A. B. C. D.10.已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.①②④ C.③④ D.①②③④二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量滿足,則與的夾角的余弦值為__________.12.一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經(jīng)建有索道供游客觀賞,經(jīng)測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現(xiàn)調(diào)查后發(fā)現(xiàn),游客對在同一圓周上三島A、B、C且位于(優(yōu)?。┮黄娘L(fēng)景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風(fēng)光,現(xiàn)決定在上選擇一個點D建立索道供游客游覽,經(jīng)研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當(dāng)△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)13.已知函數(shù)y=sin(x+)(>0,-<)的圖象如圖所示,則=________________.14.已知向量,且,則_______.15.若,則=_________________16.若,且,則的最小值是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三條直線型公路,,在點處交匯,其中與、與的夾角都為,在公路上取一點,且km,過鋪設(shè)一直線型的管道,其中點在上,點在上(,足夠長),設(shè)km,km.(1)求出,的關(guān)系式;(2)試確定,的位置,使得公路段與段的長度之和最?。?8.等差數(shù)列,等比數(shù)列,,,如果,(1)求的通項公式(2),求的最大項的值(3)將化簡,表示為關(guān)于的函數(shù)解析式19.已知集合,數(shù)列的首項,且當(dāng)時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.20.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國水周”.我國紀念年“世界水日”和“中國水周”活動的宣傳主題為“堅持節(jié)水優(yōu)先,強化水資源管理”.某中學(xué)課題小組抽取、兩個小區(qū)各戶家庭,記錄他們月份的用水量(單位:)如下表:小區(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個小區(qū)居民節(jié)水意識更好?(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.21.已知為等邊角形,.點滿足,,.設(shè).試用向量和表示;若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】∵,∴,,,∴,∴點在第二象限,故選B.點睛:本題主要考查了由三角函數(shù)值的符號判斷角的終邊位置,屬于基礎(chǔ)題;三角函數(shù)值符號記憶口訣記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.2、A【解析】

化直線方程為斜截式求解.【詳解】直線可化為,∴直線的斜率是,故選:A.【點睛】本題考查直線方程,將一般方程轉(zhuǎn)化為斜截式方程即可得直線的斜率,屬于基礎(chǔ)題.3、A【解析】

由題得即得直線的斜率得解.【詳解】由題得,所以直線的斜率為.故選:A【點睛】本題主要考查直線的斜率的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、C【解析】

利用正弦定理求,與比較的大小,判斷B能否取相應(yīng)的銳角或鈍角.【詳解】由及正弦定理,得,,B可取銳角;當(dāng)B為鈍角時,,由正弦函數(shù)在遞減,,可取.故選C.【點睛】本題考查正弦定理,解三角形中何時無解、一解、兩解的條件判斷,屬于中檔題.5、C【解析】試題分析:因為數(shù)列為等差數(shù)列,且,所以,,從而,所以,而,所以,故選C.考點:等差數(shù)列的性質(zhì).6、C【解析】

以為坐標原點,以為軸,軸建立平面直角坐標系,求出的外接圓與的內(nèi)切圓的方程,兩圓方程相減可得公共弦所在直線方程,求出弦心距,進而可得公共弦長.【詳解】解:以為坐標原點,以為軸,軸建立平面直角坐標系,過作交于點,則,故,則為等邊三角形,故,的外接圓方程為,①的內(nèi)切圓方程為,②①-②得兩圓的公共弦所在直線方程為:,的外接圓圓心到公共弦的距離為,公共弦長為,故答案為:C.【點睛】本題考查兩圓公共弦長的求解,關(guān)鍵是要求出兩圓的公共弦所在直線方程,將兩圓方程作差即可得到,是中檔題.7、B【解析】

由可得,借助三角函數(shù)定義可得m值與.【詳解】∵∴,解得又為角終邊上一點,∴,∴∴故選B【點睛】本題主要考查任意角的三角函數(shù)的定義,兩角和正切公式,屬于基礎(chǔ)題.8、D【解析】

由平面向量基本定理及單位向量可得點在的外角平分線上,且點在的外角平分線上,,,在中,由正弦定理得得解.【詳解】因為所以,因為方向為外角平分線方向,所以點在的外角平分線上,同理,點在的外角平分線上,,,在中,由正弦定理得,故選:.【點睛】本題考查了平面向量基本定理及單位向量,考查向量的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.9、D【解析】

點滿足線性約束條件∵令目標函數(shù)畫出可行域如圖所示,聯(lián)立方程解得在點處取得最小值:故選D【點睛】此題主要考查簡單的線性規(guī)劃問題以及向量的內(nèi)積的問題,解決此題的關(guān)鍵是能夠找出目標函數(shù).10、B【解析】

設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,逐項驗證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.【詳解】設(shè)數(shù)列{an}的公比為q(q≠1)①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;綜上,為“保比差數(shù)列函數(shù)”的所有序號為①②④故選:B.【點睛】本題考查新定義,考查對數(shù)的運算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由得,結(jié)合條件,即可求出,的值,代入求夾角公式,即可求解.【詳解】由得與的夾角的余弦值為.【點睛】本題考查數(shù)量積的定義,公式的應(yīng)用,求夾角公式的應(yīng)用,計算量較大,屬基礎(chǔ)題.12、【解析】

根據(jù)題意畫出草圖,根據(jù)余弦定理求出的值,設(shè)點到的距離為,可得,分析可知取最大時,取最大值,然后再對為中點和不是中點兩種情況分析,可得的最大值為,然后再根據(jù)圓的有關(guān)性質(zhì)和正弦定理,即可求出結(jié)果.【詳解】根據(jù)題意可作出及其外接圓,連接,交于點,連接,如下圖:在中,由余弦定理,由為的內(nèi)角,可知,所以.設(shè)的半徑為,點到的距離為,點到的距離為,則,故取最大時,取最大值.①當(dāng)為中點時,由垂徑定理知,即,此時,故;②當(dāng)不是中點時,不與垂直,設(shè)此時與所成角為,則,故;由垂線段最短知,此時;綜上,當(dāng)為中點時,到的距離最大,最大值為;由圓周角定理可知,,由垂徑定理知,此時點為優(yōu)弧的中點,故,則,在中,由正弦定理得所以.所以當(dāng)△ADC面積最大時建立索道AD的長為公里.故答案為:.【點評】本題考查了正弦定理、余弦定理在解決實際問題中的應(yīng)用,屬于中檔題.13、【解析】

由圖可知,14、【解析】

先由向量共線,求出,再由向量模的坐標表示,即可得出結(jié)果.【詳解】因為,且,所以,解得,所以,因此.故答案為【點睛】本題主要考查求向量的模,熟記向量共線的坐標表示,以及向量模的坐標表示即可,屬于基礎(chǔ)題型.15、【解析】分析:由二倍角公式求得,再由誘導(dǎo)公式得結(jié)論.詳解:由已知,∴.故答案為.點睛:三角函數(shù)恒等變形中,公式很多,如誘導(dǎo)公式、同角關(guān)系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個公式后選用哪個公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關(guān)系,通過這個關(guān)系都能選用恰當(dāng)?shù)墓剑?6、8【解析】

利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時,公路段與段的總長度最小【解析】

(1)(法一)觀察圖形可得,由此根據(jù)三角形的面積公式,建立方程,化簡即可得到的關(guān)系式;(法二)以點為坐標原點,所在的直線為軸建立平面直角坐標系,找到各點坐標,根據(jù)三點共線,即可得到結(jié)論;(2)運用“乘1法”,利用基本不等式,即可求得最值,得到答案.【詳解】(1)(法一)由圖形可知.,,所以,即.(法二)以為坐標原點,所在的直線為軸建立平面直角坐標系,則,,,,由,,三點共線得.(2)由(1)可知,則(),當(dāng)且僅當(dāng)(km)時取等號.答:當(dāng)時,公路段與段的總長度最小為8..【點睛】本題主要考查了三角形的面積公式應(yīng)用,以及利用基本不等式求最值,著重考查了推理運算能力,屬于基礎(chǔ)題.18、(1)(2)(3)【解析】

(1)設(shè)等比數(shù)列的公比為,運用等比數(shù)列的通項公式,解方程可得公比,即可得到所求;(2)判斷的單調(diào)性,可得所求最大值;(3)討論當(dāng)時,當(dāng)時,由分組求和,以及等差數(shù)列和等比數(shù)列的求和公式,計算可得所求和.【詳解】(1)設(shè)等比數(shù)列的公比為,,,由,,可得,,解得:,數(shù)列的通項公式:.(2)由題意得,,當(dāng)時,遞增;當(dāng)時,遞減;由,可得的最大項的值為.(3)由題意得,當(dāng)時,;當(dāng)時,綜上函數(shù)解析式【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的分組求和,考查化簡運算能力,屬于中檔題.19、(1)是;(2).【解析】

(1)依據(jù)題意,寫出遞推式,由等差數(shù)列得定義即可判斷;(2)求出,利用極限知識,求出,即可求得的值?!驹斀狻浚?)當(dāng)時,點,所以,即由得,當(dāng)時,,將代入,,故數(shù)列是以為公差的等差數(shù)列。(2)因為,所以,,由得,,,故,?!军c睛】本題主要考查等差數(shù)列的定義和通項公式的運用,以及數(shù)列極限的運算。20、(1)見解析(2)【解析】

(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結(jié)合莖葉圖中數(shù)據(jù)的分布可比較出兩個小區(qū)居民節(jié)水意識;(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的基本事件數(shù),利用古典概型的概率公式可計算出事件“小區(qū)家庭的用水量低于小區(qū)”的概率.【詳解】(1)繪制如下莖葉圖:由以上莖葉圖可以看出,小區(qū)月用水量有的葉集中在莖、上,而小區(qū)月用水量有的葉集中在莖、上,由此可看出小區(qū)居民節(jié)水意識更好;(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶的結(jié)果:、、、、、、、,共個基本事件,小區(qū)家庭的用水量低于小區(qū)的的結(jié)果:、、,共個基本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論