江蘇省無(wú)錫市宜興市十校聯(lián)考最后數(shù)學(xué)試題及答案解析_第1頁(yè)
江蘇省無(wú)錫市宜興市十校聯(lián)考最后數(shù)學(xué)試題及答案解析_第2頁(yè)
江蘇省無(wú)錫市宜興市十校聯(lián)考最后數(shù)學(xué)試題及答案解析_第3頁(yè)
江蘇省無(wú)錫市宜興市十校聯(lián)考最后數(shù)學(xué)試題及答案解析_第4頁(yè)
江蘇省無(wú)錫市宜興市十校聯(lián)考最后數(shù)學(xué)試題及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省無(wú)錫市宜興市十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a(chǎn)=b?cosA B.c=a?sinA C.a(chǎn)?cotA=b D.a(chǎn)?tanA=b3.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.4.一個(gè)不透明的袋子里裝著質(zhì)地、大小都相同的3個(gè)紅球和2個(gè)綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是()A. B. C. D.5.若是關(guān)于x的方程的一個(gè)根,則方程的另一個(gè)根是()A.9 B.4 C.4 D.36.已知一組數(shù)據(jù):12,5,9,5,14,下列說(shuō)法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是57.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°8.如圖,與∠1是內(nèi)錯(cuò)角的是()A.∠2B.∠3C.∠4D.∠59.某校體育節(jié)有13名同學(xué)參加女子百米賽跑,它們預(yù)賽的成績(jī)各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績(jī),她想知道自己能否進(jìn)入決賽,還需要知道這13名同學(xué)成績(jī)的()A.方差B.極差C.中位數(shù)D.平均數(shù)10.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正確的結(jié)論有().A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對(duì)角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點(diǎn),連接EF,點(diǎn)P是EF上的任意一點(diǎn),連接PA,PB,則PA+PB的最小值為_(kāi)_.12.如圖所示,四邊形ABCD中,,對(duì)角線AC、BD交于點(diǎn)E,且,,若,,則CE的長(zhǎng)為_(kāi)____.13.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為_(kāi)_______.14.如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=a(x+)2+k與y軸的交點(diǎn),點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,則以AB為邊的正方形ABCD的周長(zhǎng)為_(kāi)____.15.如圖,線段AC=n+1(其中n為正整數(shù)),點(diǎn)B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時(shí),△AME的面積記為S1;當(dāng)AB=2時(shí),△AME的面積記為S2;當(dāng)AB=3時(shí),△AME的面積記為S3;…;當(dāng)AB=n時(shí),△AME的面積記為Sn.當(dāng)n≥2時(shí),Sn﹣Sn﹣1=▲.16.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.17.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動(dòng)點(diǎn),則CP+AP的最小值為_(kāi)____.三、解答題(共7小題,滿分69分)18.(10分)中央電視臺(tái)的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書”,某校對(duì)八年級(jí)部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:本數(shù)(本)頻數(shù)(人數(shù))頻率50.26180.36714880.16合計(jì)1(1)統(tǒng)計(jì)表中的________,________,________;請(qǐng)將頻數(shù)分布表直方圖補(bǔ)充完整;求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);若該校八年級(jí)共有1200名學(xué)生,請(qǐng)你分析該校八年級(jí)學(xué)生課外閱讀7本及以上的人數(shù).19.(5分)某市飛翔航模小隊(duì),計(jì)劃購(gòu)進(jìn)一批無(wú)人機(jī).已知3臺(tái)A型無(wú)人機(jī)和4臺(tái)B型無(wú)人機(jī)共需6400元,4臺(tái)A型無(wú)人機(jī)和3臺(tái)B型無(wú)人機(jī)共需6200元.(1)求一臺(tái)A型無(wú)人機(jī)和一臺(tái)B型無(wú)人機(jī)的售價(jià)各是多少元?(2)該航模小隊(duì)一次購(gòu)進(jìn)兩種型號(hào)的無(wú)人機(jī)共50臺(tái),并且B型無(wú)人機(jī)的數(shù)量不少于A型無(wú)人機(jī)的數(shù)量的2倍.設(shè)購(gòu)進(jìn)A型無(wú)人機(jī)x臺(tái),總費(fèi)用為y元.①求y與x的關(guān)系式;②購(gòu)進(jìn)A型、B型無(wú)人機(jī)各多少臺(tái),才能使總費(fèi)用最少?20.(8分)一天晚上,李明利用燈光下的影子長(zhǎng)來(lái)測(cè)量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測(cè)得直立的標(biāo)桿高AM與影子長(zhǎng)AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測(cè)得直立標(biāo)桿高BN的影子恰好是線段AB,并測(cè)得AB=1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長(zhǎng).21.(10分)先化簡(jiǎn),然后從﹣<x<的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.22.(10分)今年3月12日植樹(shù)節(jié)期間,學(xué)校預(yù)購(gòu)進(jìn)A,B兩種樹(shù)苗.若購(gòu)進(jìn)A種樹(shù)苗3棵,B種樹(shù)苗5棵,需2100元;若購(gòu)進(jìn)A種樹(shù)苗4棵,B種樹(shù)苗10棵,需3800元.求購(gòu)進(jìn)A,B兩種樹(shù)苗的單價(jià);若該學(xué)校準(zhǔn)備用不多于8000元的錢購(gòu)進(jìn)這兩種樹(shù)苗共30棵,求A種樹(shù)苗至少需購(gòu)進(jìn)多少棵.23.(12分)如圖1,已知直線l:y=﹣x+2與y軸交于點(diǎn)A,拋物線y=(x﹣1)2+m也經(jīng)過(guò)點(diǎn)A,其頂點(diǎn)為B,將該拋物線沿直線l平移使頂點(diǎn)B落在直線l的點(diǎn)D處,點(diǎn)D的橫坐標(biāo)n(n>1).(1)求點(diǎn)B的坐標(biāo);(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點(diǎn)C,且點(diǎn)C的橫坐標(biāo)為a.①請(qǐng)寫出a與n的函數(shù)關(guān)系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.24.(14分)計(jì)算:.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】由拋物線的開(kāi)口向下知a<0,與y軸的交點(diǎn)為在y軸的正半軸上,得c>0,對(duì)稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個(gè)交點(diǎn),∴?4ac>0,當(dāng)x=2時(shí),y=4a+2b+c<0,當(dāng)x=1時(shí),a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個(gè)相加得到6a<?6,∴a<?1.故選D.點(diǎn)睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號(hào)由拋物線的開(kāi)口方向決定;c的符號(hào)由拋物線與y軸交點(diǎn)的位置決定;b的符號(hào)由對(duì)稱軸位置與a的符號(hào)決定;拋物線與x軸的交點(diǎn)個(gè)數(shù)決定根的判別式的符號(hào),注意二次函數(shù)圖象上特殊點(diǎn)的特點(diǎn).2、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項(xiàng)C正確,故選C.【點(diǎn)睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運(yùn)用是解題的關(guān)鍵.3、B【解析】

根據(jù)題意畫出圖形,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長(zhǎng),由垂徑定理表示出BC的長(zhǎng),然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長(zhǎng),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.4、A【解析】

列表或畫樹(shù)狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.5、D【解析】

解:設(shè)方程的另一個(gè)根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.6、D【解析】分別計(jì)算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項(xiàng)A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項(xiàng)B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項(xiàng)C正確;極差為:14﹣5=9,故選項(xiàng)D錯(cuò)誤.故選D7、C【解析】分析:欲求∠B的度數(shù),需求出同弧所對(duì)的圓周角∠C的度數(shù);△APC中,已知了∠A及外角∠APD的度數(shù),即可由三角形的外角性質(zhì)求出∠C的度數(shù),由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.8、B【解析】由內(nèi)錯(cuò)角定義選B.9、C【解析】13個(gè)不同的分?jǐn)?shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個(gè)數(shù),故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否獲獎(jiǎng)了.故選C.10、C【解析】

由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】解:拋物線開(kāi)口向下,得:a<0;拋物線的對(duì)稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.∴abc<0,①正確;2a+b=0,②正確;由圖知:拋物線與x軸有兩個(gè)不同的交點(diǎn),則△=b2-4ac>0,故③錯(cuò)誤;由對(duì)稱性可知,拋物線與x軸的正半軸的交點(diǎn)橫坐標(biāo)是x=3,所以當(dāng)x=3時(shí),y=9a+3b+c=0,故④錯(cuò)誤;觀察圖象得當(dāng)x=-2時(shí),y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正確.正確的結(jié)論有①②⑤,故選:C【點(diǎn)睛】主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱軸的表達(dá)式求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點(diǎn),四邊形ABCD是等腰梯形,B點(diǎn)關(guān)于EF的對(duì)稱點(diǎn)C點(diǎn),AC即為PA+PB的最小值,∠BCD=,對(duì)角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點(diǎn)睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.12、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點(diǎn)G,利用三線合一性質(zhì)及鄰補(bǔ)角互補(bǔ)可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時(shí)再延長(zhǎng)GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說(shuō)明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長(zhǎng)度,在Rt△DBH中利用勾股定理及三角函數(shù)知識(shí)得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長(zhǎng)度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點(diǎn)G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長(zhǎng)GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時(shí),,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運(yùn)用,綜合性較強(qiáng),正確作出輔助線是解題的關(guān)鍵.13、【解析】

根據(jù)概率的計(jì)算方法求解即可.【詳解】∵第4次拋擲一枚均勻的硬幣時(shí),正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【點(diǎn)睛】此題考查了概率公式的計(jì)算方法,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、1【解析】

根據(jù)題意和二次函數(shù)的性質(zhì)可以求得線段AB的長(zhǎng)度,從而可以求得正方形ABCD的周長(zhǎng).【詳解】∵在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=a(x+)2+k與y軸的交點(diǎn),∴點(diǎn)A的橫坐標(biāo)是0,該拋物線的對(duì)稱軸為直線x=﹣,∵點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,∴點(diǎn)B的橫坐標(biāo)是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長(zhǎng)為:3×4=1,故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、正方形的性質(zhì),解題的關(guān)鍵是找出所求問(wèn)題需要的條件.15、【解析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當(dāng)AB=n時(shí),△AME的面積為,當(dāng)AB=n-1時(shí),△AME的面積為.∴當(dāng)n≥2時(shí),16、1【解析】

由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點(diǎn)睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.17、【解析】

可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問(wèn)題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問(wèn)題得解.三、解答題(共7小題,滿分69分)18、(1)10,0.28,50(2)圖形見(jiàn)解析(3)6.4(4)528【解析】分析:(1)首先求出總?cè)藬?shù),再根據(jù)頻率,總數(shù),頻數(shù)的關(guān)系即可解決問(wèn)題;(2)根據(jù)a的值畫出條形圖即可;(3)根據(jù)平均數(shù)的定義計(jì)算即可;(4)用樣本估計(jì)總體的思想解決問(wèn)題即可;詳解:(1)由題意c==50,a=50×0.2=10,b==0.28,c=50;故答案為10,0.28,50;(2)將頻數(shù)分布表直方圖補(bǔ)充完整,如圖所示:(3)所有被調(diào)查學(xué)生課外閱讀的平均本數(shù)為:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)該校七年級(jí)學(xué)生課外閱讀7本及以上的人數(shù)為:(0.28+0.16)×1200=528(人).點(diǎn)睛:本題考查頻數(shù)分布直方圖、扇形統(tǒng)計(jì)圖、樣本估計(jì)總體等知識(shí),解題的關(guān)鍵是熟練掌握基本概念,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.19、(1)一臺(tái)A型無(wú)人機(jī)售價(jià)800元,一臺(tái)B型無(wú)人機(jī)的售價(jià)1000元;(2)①y=﹣200x+50000;②購(gòu)進(jìn)A型、B型無(wú)人機(jī)各16臺(tái)、34臺(tái)時(shí),才能使總費(fèi)用最少.【解析】

(1)根據(jù)3臺(tái)A型無(wú)人機(jī)和4臺(tái)B型無(wú)人機(jī)共需6400元,4臺(tái)A型無(wú)人機(jī)和3臺(tái)B型無(wú)人機(jī)共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系式;②根據(jù)①中的函數(shù)關(guān)系式和B型無(wú)人機(jī)的數(shù)量不少于A型無(wú)人機(jī)的數(shù)量的2倍,可以求得購(gòu)進(jìn)A型、B型無(wú)人機(jī)各多少臺(tái),才能使總費(fèi)用最少.【詳解】解:(1)設(shè)一臺(tái)型無(wú)人機(jī)售價(jià)元,一臺(tái)型無(wú)人機(jī)的售價(jià)元,,解得,,答:一臺(tái)型無(wú)人機(jī)售價(jià)元,一臺(tái)型無(wú)人機(jī)的售價(jià)元;(2)①由題意可得,即y與x的函數(shù)關(guān)系式為;②∵B型無(wú)人機(jī)的數(shù)量不少于A型無(wú)人機(jī)的數(shù)量的2倍,,解得,,,∴當(dāng)時(shí),y取得最小值,此時(shí),答:購(gòu)進(jìn)型、型無(wú)人機(jī)各臺(tái)、臺(tái)時(shí),才能使總費(fèi)用最少.【點(diǎn)睛】本題考查二元一次方程組的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和方程的知識(shí)解答.20、路燈高CD為5.1米.【解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式求解即可.【詳解】設(shè)CD長(zhǎng)為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗(yàn),x=5.1是原方程的解,∴路燈高CD為5.1米.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.21、【解析】

根據(jù)分式的減法和除法可以化簡(jiǎn)題目中的式子,然后從﹣<x<的范圍內(nèi)選取一個(gè)使得原分式有意義的整數(shù)作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當(dāng)x=﹣2時(shí),原式=.【點(diǎn)睛】本題考查分式的化簡(jiǎn)求值、估算無(wú)理數(shù)的大小,解答本題的關(guān)鍵是明確分式化簡(jiǎn)求值的方法.22、(1)A種樹(shù)苗的單價(jià)為200元,B種樹(shù)苗的單價(jià)為300元;(2)10棵【解析】試題分析:(1)設(shè)B種樹(shù)苗的單價(jià)為x元,則A種樹(shù)苗的單價(jià)為y元.則由等量關(guān)系列出方程組解答即可;(2)設(shè)購(gòu)買A種樹(shù)苗a棵,則B種樹(shù)苗為(30﹣a)棵,然后根據(jù)總費(fèi)用和兩種樹(shù)苗的棵數(shù)關(guān)系列出不等式解答即可.試題解析:(1)設(shè)B種樹(shù)苗的單價(jià)為x元,則A種樹(shù)苗的單價(jià)為y元,可得:,解得:,答:A種樹(shù)苗的單價(jià)為200元,B種樹(shù)苗的單價(jià)為300元.(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論