版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省合肥二十一中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖所示的幾何體的主視圖是()A. B. C. D.2.已知點(diǎn)A(0,﹣4),B(8,0)和C(a,﹣a),若過點(diǎn)C的圓的圓心是線段AB的中點(diǎn),則這個(gè)圓的半徑的最小值是()A. B. C. D.23.下列二次根式中,是最簡(jiǎn)二次根式的是()A. B. C. D.4.函數(shù)與在同一坐標(biāo)系中的大致圖象是()A、B、C、D、5.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2896.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.67.一、單選題二次函數(shù)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)8.如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=()A.50° B.40° C.30° D.20°9.如圖中任意畫一個(gè)點(diǎn),落在黑色區(qū)域的概率是()A. B. C.π D.5010.正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為()A.30° B.60° C.120° D.180°二、填空題(共7小題,每小題3分,滿分21分)11.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使得點(diǎn)A落在點(diǎn)A′,點(diǎn)B落在點(diǎn)B′.若點(diǎn)A′在邊AB上,則點(diǎn)B、B′的距離為_____.12.如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l1分別通過A、B、C三點(diǎn),且l1∥l2∥l1.若l1與l2的距離為5,l2與l1的距離為7,則Rt△ABC的面積為___________13.已知拋物線y=x2-x-1與x軸的一個(gè)交點(diǎn)為(m,0),則代數(shù)式m2-m+2017的值為____.14.如圖,點(diǎn)A在反比例函數(shù)y=(x>0)的圖像上,過點(diǎn)A作AD⊥y軸于點(diǎn)D,延長(zhǎng)AD至點(diǎn)C,使CD=2AD,過點(diǎn)A作AB⊥x軸于點(diǎn)B,連結(jié)BC交y軸于點(diǎn)E,若△ABC的面積為6,則k的值為________.15.如圖,在每個(gè)小正方形邊長(zhǎng)為的網(wǎng)格中,的頂點(diǎn),,均在格點(diǎn)上,為邊上的一點(diǎn).線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點(diǎn),使的值最小,請(qǐng)用無刻度的直尺,畫出和點(diǎn),并簡(jiǎn)要說明和點(diǎn)的位置是如何找到的(不要求證明)___________.16.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.17.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時(shí)測(cè)得米的影長(zhǎng)為米,則電線桿的高度為__________米.三、解答題(共7小題,滿分69分)18.(10分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點(diǎn)E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.19.(5分)某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度他們?cè)贑處仰望建筑物頂端A處,測(cè)得仰角為,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為,求建筑物的高度測(cè)角器的高度忽略不計(jì),結(jié)果精確到米,,20.(8分)如圖,在Rt△ABC中,,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點(diǎn),則當(dāng)=______時(shí),四邊形BECD是正方形.21.(10分)某超市對(duì)今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計(jì),并繪制如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問題:(1)該超市“元旦”期間共銷售個(gè)綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)的扇形圓心角是度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個(gè),請(qǐng)你估計(jì)這個(gè)分店銷售的B種品牌的綠色雞蛋的個(gè)數(shù)?22.(10分)已知△OAB在平面直角坐標(biāo)系中的位置如圖所示.請(qǐng)解答以下問題:按要求作圖:先將△ABO繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得△OA1B1,再以原點(diǎn)O為位似中心,將△OA1B1在原點(diǎn)異側(cè)按位似比2:1進(jìn)行放大得到△OA2B2;直接寫出點(diǎn)A1的坐標(biāo),點(diǎn)A2的坐標(biāo).23.(12分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當(dāng)AB=AC,且sin∠BEF=時(shí),求的值;(2)如圖2,當(dāng)tan∠ABC=時(shí),過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當(dāng)時(shí),求矩形BCDE的面積24.(14分)如圖,直線y=12x與雙曲線y=kx(k>0,x>0)交于點(diǎn)A,將直線y=12(1)設(shè)點(diǎn)B的橫坐標(biāo)分別為b,試用只含有字母b的代數(shù)式表示k;(2)若OA=3BC,求k的值.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
主視圖就是從正面看,看列數(shù)和每一列的個(gè)數(shù).【詳解】解:由圖可知,主視圖如下故選C.【點(diǎn)睛】考核知識(shí)點(diǎn):組合體的三視圖.2、B【解析】
首先求得AB的中點(diǎn)D的坐標(biāo),然后求得經(jīng)過點(diǎn)D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點(diǎn)坐標(biāo),再求得交點(diǎn)與D之間的距離即可.【詳解】AB的中點(diǎn)D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點(diǎn)的坐標(biāo)是(3,-3).則這個(gè)圓的半徑的最小值是:=.
故選:B【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.3、B【解析】
根據(jù)最簡(jiǎn)二次根式必須滿足兩個(gè)條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡(jiǎn)二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點(diǎn)睛】本題考查最簡(jiǎn)二次根式的定義.最簡(jiǎn)二次根式必須滿足兩個(gè)條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.4、D.【解析】試題分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì),分k>0和k<0兩種情況討論:當(dāng)k<0時(shí),一次函數(shù)圖象過二、四、三象限,反比例函數(shù)中,-k>0,圖象分布在一、三象限;當(dāng)k>0時(shí),一次函數(shù)過一、三、四象限,反比例函數(shù)中,-k<0,圖象分布在二、四象限.故選D.考點(diǎn):一次函數(shù)和反比例函數(shù)的圖象.5、D【解析】
分兩種情況進(jìn)行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當(dāng)弦AB和CD在圓心同側(cè)時(shí),如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當(dāng)弦AB和CD在圓心異側(cè)時(shí),如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點(diǎn)睛】本題考查了勾股定理和垂徑定理的應(yīng)用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用,小心別漏解.6、B【解析】
根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點(diǎn)睛】考查了二次函數(shù)的最值,解題時(shí),利用配方法和非負(fù)數(shù)的性質(zhì)求得xy的最大值.7、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個(gè)交點(diǎn),故正確;③∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴拋物線上x=0時(shí)的點(diǎn)與當(dāng)x=2時(shí)的點(diǎn)對(duì)稱,即當(dāng)x=2時(shí),y>0∴4a+2b+c>0,故錯(cuò)誤;④∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個(gè).故選B.8、B【解析】試題解析:延長(zhǎng)ED交BC于F,∵AB∥DE,∴在△CDF中,故故選B.9、B【解析】
抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因?yàn)椋诎讌^(qū)域面積相等,所以,點(diǎn)落在黑色區(qū)域的概率是.故選B【點(diǎn)睛】本題考核知識(shí)點(diǎn):幾何概率.解題關(guān)鍵點(diǎn):分清黑白區(qū)域面積關(guān)系.10、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為120°,故選C.【點(diǎn)睛】本題考查旋轉(zhuǎn)對(duì)稱圖形的概念:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角,掌握正多邊形的中心角的求解是解題的關(guān)鍵二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
過點(diǎn)C作CH⊥AB于H,利用解直角三角形的知識(shí),分別求出AH、AC、BC的值,進(jìn)而利用三線合一的性質(zhì)得出AA'的值,然后利用旋轉(zhuǎn)的性質(zhì)可判定△ACA'∽△BCB',繼而利用相似三角形的對(duì)應(yīng)邊成比例的性質(zhì)可得出BB'的值.【詳解】解:過點(diǎn)C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB?cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC?cosA=4,
由旋轉(zhuǎn)的性質(zhì)得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中點(diǎn),
∴AA'=2AH=8,
又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉(zhuǎn)角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點(diǎn)睛】此題考查了解直角三角形、旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出△ACA'∽△BCB'.12、17【解析】過點(diǎn)B作EF⊥l2,交l1于E,交l1于F,如圖,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB?BC=AB2=17.故答案是17.點(diǎn)睛:本題考查了全等三角形的判定和性質(zhì)、勾股定理、平行線間的距離,三角形的面積公式,解題的關(guān)鍵是做輔助線,構(gòu)造全等三角形,通過證明三角形全等對(duì)應(yīng)邊相等,再利用三角形的面積公式即可得解.13、1【解析】
把點(diǎn)(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【詳解】∵二次函數(shù)y=x2﹣x﹣1的圖象與x軸的一個(gè)交點(diǎn)為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)問題,求代數(shù)式的值的應(yīng)用,解答此題的關(guān)鍵是求出m2﹣m=1,難度適中.14、1【解析】
連結(jié)BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義得到k的值.【詳解】連結(jié)BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點(diǎn)D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.15、(Ⅰ)(Ⅱ)如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn).【解析】
(Ⅰ)根據(jù)勾股定理進(jìn)行計(jì)算即可.(Ⅱ)根據(jù)菱形的每一條對(duì)角線平分每一組對(duì)角,構(gòu)造邊長(zhǎng)為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點(diǎn)F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點(diǎn)C與F關(guān)于AM對(duì)稱,連接DF交AM于點(diǎn)P,此時(shí)的值最?。驹斀狻浚á瘢└鶕?jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn),則點(diǎn)P即為所求.說明:構(gòu)造邊長(zhǎng)為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點(diǎn)F,使AF=AC=1,則AM垂直平分CF,點(diǎn)C與F關(guān)于AM對(duì)稱,連接DF交AM于點(diǎn)P,則點(diǎn)P即為所求.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對(duì)稱—最短距離等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題.16、2【解析】分析:根據(jù)分式的運(yùn)算法則即可求出答案.詳解:當(dāng)a+b=2時(shí),原式===a+b=2故答案為:2點(diǎn)睛:本題考查分式的運(yùn)算,解題的關(guān)鍵熟練運(yùn)用分式的運(yùn)算法則,本題屬于基礎(chǔ)題型.17、(14+2)米【解析】
過D作DE⊥BC的延長(zhǎng)線于E,連接AD并延長(zhǎng)交BC的延長(zhǎng)線于F,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時(shí)同地物高與影長(zhǎng)成正比列式求出EF,再求出BF,再次利用同時(shí)同地物高與影長(zhǎng)成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長(zhǎng)線于E,連接AD并延長(zhǎng)交BC的延長(zhǎng)線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長(zhǎng)為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,主要利用了同時(shí)同地物高與影長(zhǎng)成正比的性質(zhì),作輔助線求出AB的影長(zhǎng)若全在水平地面上的長(zhǎng)BF是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點(diǎn)P作PG⊥EF于G,解直角三角形即可得到結(jié)論;
(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點(diǎn)P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,
∵四邊形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP?cos30°=3,同理AN=3,
∴AE+AF=(AM-EM)+(AN+NF)=6.【點(diǎn)睛】運(yùn)用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.19、14.2米;【解析】
Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據(jù)CD=BC-BD可得關(guān)于AB的方程,解方程可得.【詳解】設(shè)米∵∠C=45°在中,米,,
又米,在中Tan∠ADB=,Tan60°=解得答,建筑物的高度為米.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想找出各邊之間的關(guān)系,然后找出所求問題需要的條件.20、(1)詳見解析;(2)菱形;(3)當(dāng)∠A=45°,四邊形BECD是正方形.【解析】
(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵M(jìn)N//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點(diǎn),∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點(diǎn),∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點(diǎn),則當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),菱形的判定、正方形的判定,直角三角形斜邊中線的性質(zhì)等,綜合性較強(qiáng),熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.21、(1)2400,60;(2)見解析;(3)500【解析】整體分析:(1)由C品牌1200個(gè)占總數(shù)的50%可得雞蛋的數(shù)量,用A品牌占總數(shù)的百分比乘以360°即可;(2)計(jì)算出B品牌的數(shù)量;(3)用B品牌與總數(shù)的比乘以1500.解:(1)共銷售綠色雞蛋:1200÷50%=2400個(gè),A品牌所占的圓心角:×360°=60°;故答案為2400,60;(2)B品牌雞蛋的數(shù)量為:2400﹣400﹣1200=800個(gè),補(bǔ)全統(tǒng)計(jì)圖如圖:(3)分店銷售的B種品牌的綠色雞蛋為:×1500=500個(gè).22、(1)見解析;(2)點(diǎn)A1的坐標(biāo)為:(﹣1,3),點(diǎn)A2的坐標(biāo)為:(2,﹣6).【解析】
(1)直接利用位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;(2)利用(1)中所畫圖形進(jìn)而得出答案.【詳解】(1)如圖所示:△OA1B1,△OA2B2,即為所求;(2)點(diǎn)A1的坐標(biāo)為:(﹣1,3),點(diǎn)A2的坐標(biāo)為:(2,﹣6).【點(diǎn)睛】此題主要考查了位似變換以及旋轉(zhuǎn)變換,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.23、(1);(2)80;(3)100.【解析】
(1)過A作AK⊥BC于K,根據(jù)sin∠BEF=得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 咖啡館水電施工合同
- 地下通道鉆機(jī)租賃協(xié)議
- 海上航行保障船員安全承諾書
- 文化產(chǎn)業(yè)資金管理指南
- 旅游區(qū)導(dǎo)游人員團(tuán)隊(duì)合作
- 汽車銷售顧問聘用合同
- 鐵路建設(shè)架管租賃合同
- 制服清洗質(zhì)量監(jiān)控
- 虛擬現(xiàn)實(shí)經(jīng)紀(jì)人聘用合同
- 能源科技廠房建設(shè)合同
- 高校外籍學(xué)生意識(shí)形態(tài)適應(yīng)方案
- 2024年地下水監(jiān)測(cè)打井施工合同
- 績(jī)效管理2022-2023-2學(xué)期學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2023年江門市基層公共就業(yè)創(chuàng)業(yè)服務(wù)崗位招聘考試真題
- 圖解《黑神話悟空》微課件
- 期中模擬測(cè)試卷3(試題)-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)(福建)
- 電子產(chǎn)品回收處理協(xié)議
- 三角函數(shù)2024-2025學(xué)年高中數(shù)學(xué)一輪復(fù)習(xí)專題訓(xùn)練(含答案)
- 礦石交易居間合同模板
- 期中測(cè)試卷(試題)-2024-2025學(xué)年人教版數(shù)學(xué)四年級(jí)上冊(cè)
- LNG(天然氣)供氣站(氣化站)安全應(yīng)急救援預(yù)案
評(píng)論
0/150
提交評(píng)論