![2023-2024學(xué)年浙江省杭州市青春中學(xué)中考四模數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view3/M00/0D/35/wKhkFmZrhJOAS4cGAAHY0GjVDnc836.jpg)
![2023-2024學(xué)年浙江省杭州市青春中學(xué)中考四模數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view3/M00/0D/35/wKhkFmZrhJOAS4cGAAHY0GjVDnc8362.jpg)
![2023-2024學(xué)年浙江省杭州市青春中學(xué)中考四模數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view3/M00/0D/35/wKhkFmZrhJOAS4cGAAHY0GjVDnc8363.jpg)
![2023-2024學(xué)年浙江省杭州市青春中學(xué)中考四模數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view3/M00/0D/35/wKhkFmZrhJOAS4cGAAHY0GjVDnc8364.jpg)
![2023-2024學(xué)年浙江省杭州市青春中學(xué)中考四模數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view3/M00/0D/35/wKhkFmZrhJOAS4cGAAHY0GjVDnc8365.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省杭州市青春中學(xué)中考四模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.2.已知反比例函數(shù)y=-2A.圖象必經(jīng)過點(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內(nèi) D.若x>1,則0>y>-23.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點,那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位4.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.5.運用乘法公式計算(3﹣a)(a+3)的結(jié)果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+96.下列實數(shù)中,在2和3之間的是()A. B. C. D.7.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.258.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.229.若二次函數(shù)的圖象與軸有兩個交點,坐標(biāo)分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.10.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E11.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C逆時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.412.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.14.在中,::1:2:3,于點D,若,則______15.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.16.已知a+b=1,那么a2-b2+2b=________.17.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.18.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經(jīng)過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標(biāo)和四邊形的面積.20.(6分)三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.21.(6分)某同學(xué)用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?22.(8分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標(biāo)系中的位置如圖所示.(1)直接寫出關(guān)于原點的中心對稱圖形各頂點坐標(biāo):________________________;(2)將繞B點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后圖形.求在旋轉(zhuǎn)過程中所掃過的圖形的面積和點經(jīng)過的路徑長.23.(8分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號和π)24.(10分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側(cè)的一點,若,且與的面積相等,求點的坐標(biāo);(3)若在軸上有且只有一點,使,求的值.25.(10分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經(jīng)過點C、D,圓心距.(1)當(dāng)m=6時,求線段CD的長;(2)設(shè)圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點P的運動過程中,是否能成為以O(shè)O1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.26.(12分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標(biāo)為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標(biāo);(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.27.(12分)讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學(xué)子算得快,多少年華屬周瑜?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖2、B【解析】試題分析:根據(jù)反比例函數(shù)y=kx試題解析:A、(-1,2)滿足函數(shù)的解析式,則圖象必經(jīng)過點(-1,2);B、在每個象限內(nèi)y隨x的增大而增大,在自變量取值范圍內(nèi)不成立,則命題錯誤;C、命題正確;D、命題正確.故選B.考點:反比例函數(shù)的性質(zhì)3、A【解析】將拋物線平移,使平移后所得拋物線經(jīng)過原點,若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經(jīng)過原點;若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經(jīng)過原點,故選A.4、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.5、C【解析】
根據(jù)平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關(guān)鍵是應(yīng)用平方差公式計算時,應(yīng)注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數(shù);②右邊是相同項的平方減去相反項的平方.6、C【解析】
分析:先求出每個數(shù)的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;
B、1<π?2<2,故本選項不符合題意;
C、2<<3,故本選項符合題意;
D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數(shù)的大小,能估算出每個數(shù)的范圍是解本題的關(guān)鍵.7、C【解析】
先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進(jìn)而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.8、D【解析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關(guān)鍵.9、D【解析】
根據(jù)拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負(fù)情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.10、C【解析】
根據(jù)平行線性質(zhì)和全等三角形的判定定理逐個分析.【詳解】由,得∠B=∠D,因為,若≌,則還需要補充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點睛】本題考核知識點:全等三角形的判定.解題關(guān)鍵點:熟記全等三角形判定定理.11、D【解析】
如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關(guān)鍵.12、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當(dāng)他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當(dāng)x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.14、2.1【解析】
先求出△ABC是∠A等于30°的直角三角形,再根據(jù)30°角所對的直角邊等于斜邊的一半求解.【詳解】解:根據(jù)題意,設(shè)∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【點睛】本題主要考查含30度角的直角三角形的性質(zhì)和三角形內(nèi)角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關(guān)鍵.15、【解析】
根據(jù)二次函數(shù)的圖象和性質(zhì)結(jié)合三角形面積公式求解.【詳解】解:設(shè)點橫坐標(biāo)為,則點縱坐標(biāo)為,點B的縱坐標(biāo)為,∵BE∥x軸,∴點F縱坐標(biāo)為,∵點F是拋物線上的點,∴點F橫坐標(biāo)為,∵軸,∴點D縱坐標(biāo)為,∵點D是拋物線上的點,∴點D橫坐標(biāo)為,,故答案為.【點睛】此題重點考查學(xué)生對二次函數(shù)的圖象和性質(zhì)的應(yīng)用能力,熟練掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.16、1【解析】
解:∵a+b=1,∴原式=故答案為1.【點睛】本題考查的是平方差公式的靈活運用.17、540°【解析】
根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和18、1【解析】
根據(jù)題意得出△AOD∽△OCE,進(jìn)而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、;.【解析】
(1)由正方形的性質(zhì)可求得B、C的坐標(biāo),代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;
(2)把拋物線解析式化為頂點式可求得D點坐標(biāo),再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標(biāo)代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標(biāo)為,則.【點睛】二次函數(shù)的綜合應(yīng)用.解題的關(guān)鍵是:在(1)中確定出B、C的坐標(biāo)是解題的關(guān)鍵,在(2)中把四邊形轉(zhuǎn)化成兩個三角形.20、(1);(2)【解析】
(1)用樹狀圖分3次實驗列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;
(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點睛】考查了概率的求法;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關(guān)鍵.21、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當(dāng)點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質(zhì)得到DF∥AC,所以由平行線的性質(zhì)、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關(guān)系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當(dāng)D運動到AB中點時,四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內(nèi)角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當(dāng)點D運動到AB中點位置時四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點.∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點睛:本題是幾何變換綜合題型,主要考查了平移變換的性質(zhì),勾股定理,正方形的判定,菱形的判定與性質(zhì)以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關(guān)鍵.22、(1),,;(2)作圖見解析,面積,.【解析】
(1)由在平面直角坐標(biāo)系中的位置可得A、B、C的坐標(biāo),根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點即可得、、的坐標(biāo);(2)由旋轉(zhuǎn)的性質(zhì)可畫出旋轉(zhuǎn)后圖形,利用面積的和差計算出,然后根據(jù)扇形的面積公式求出,利用旋轉(zhuǎn)過程中掃過的面積進(jìn)行計算即可.再利用弧長公式求出點C所經(jīng)過的路徑長.【詳解】解:(1)由在平面直角坐標(biāo)系中的位置可得:,,,∵與關(guān)于原點對稱,∴,,(2)如圖所示,即為所求,∵,,∴,∴,∵,∴在旋轉(zhuǎn)過程中所掃過的面積:點所經(jīng)過的路徑:.【點睛】本題考查的是圖形的旋轉(zhuǎn)、及扇形面積和扇形弧長的計算,根據(jù)已知得出對應(yīng)點位置,作出圖形是解題的關(guān)鍵.23、(1)證明見解析(2)﹣6π【解析】
(1)直接利用切線的判定方法結(jié)合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF?tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA?sin30°=3,EA=DA?cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD==.【點睛】此題主要考查了切線的判定,圓周角定理,等邊三角形的判定與性質(zhì),解直角三角形及扇形面積求法等知識,得出S△ACD=S△COD是解題關(guān)鍵.24、(1).;(2)點坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關(guān)于對稱.,,.,,.綜上所述,點坐標(biāo)為;.(3)由題意可得:.,,,即.,,.設(shè)的中點為,點有且只有一個,以為直徑的圓與軸只有一個交點,且為切點.軸,為的中點,.,,,,即,.,.點睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關(guān)系列方程解決問題,會分類討論各種情況是解題的關(guān)鍵.25、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點作⊥,垂足為點,連接.解Rt△,得到的長.由勾股定理得的長,再由垂徑定理即可得到結(jié)論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結(jié)論;(3)△成為等腰三角形可分以下幾種情況討論:①當(dāng)圓心、在弦異側(cè)時,分和.②當(dāng)圓心、在弦同側(cè)時,同理可得結(jié)論.詳解:(1)過點作⊥,垂足為點,連接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成為等腰三角形可分以下幾種情況:①當(dāng)圓心、在弦異側(cè)時i),即,由,解得.即圓心距等于、的半徑的和,就有、外切不合題意舍去.ii),由,解得:,即,解得.②當(dāng)圓心、在弦同側(cè)時,同理可得:.∵是鈍角,∴只能是,即,解得.綜上所述:n的值為或.點睛:本題是圓的綜合題.考查了圓的有關(guān)性質(zhì)和兩圓的位置關(guān)系以及解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度綠色建筑個人房產(chǎn)抵押貸款協(xié)議
- 二零二五年度高端制造崗位聘用合同4篇
- 2025年度林業(yè)荒山承包經(jīng)營權(quán)變更登記代理合同
- 二零二五年度馬鈴薯種植與農(nóng)產(chǎn)品深加工合作合同3篇
- 2025至2030年中國半盒式鋁合金遮陽篷數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年多角度傾斜式重力鑄造機項目投資價值分析報告
- 2025至2030年低頻數(shù)據(jù)傳輸電纜項目投資價值分析報告
- 2025年醋酸地塞米松片項目可行性研究報告
- 2025年天花造型角項目可行性研究報告
- 2025至2030年車故障診斷系統(tǒng)項目投資價值分析報告
- 查干淖爾一號井環(huán)評
- 售后工程師績效考核指南
- 體檢中心分析報告
- 人教版初中英語七八九全部單詞(打印版)
- 臺球運動中的理論力學(xué)
- 最高人民法院婚姻法司法解釋(二)的理解與適用
- 關(guān)于醫(yī)保應(yīng)急預(yù)案
- 新人教版五年級上冊數(shù)學(xué)應(yīng)用題大全doc
- 2022年版義務(wù)教育勞動課程標(biāo)準(zhǔn)學(xué)習(xí)培訓(xùn)解讀課件筆記
- 2022年中國止血材料行業(yè)概覽:發(fā)展現(xiàn)狀對比分析研究報告(摘要版) -頭豹
- 一起重新構(gòu)想我們的未來:為教育打造新的社會契約
評論
0/150
提交評論