2025屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
2025屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
2025屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
2025屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
2025屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級中學(xué)高一下數(shù)學(xué)期末質(zhì)量檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知實(shí)數(shù)列-1,x,y,z,-2成等比數(shù)列,則xyz等于A.-4 B. C. D.2.若長方體三個面的面積分別為2,3,6,則此長方體的外接球的表面積等于()A. B. C. D.3.圓與圓的位置關(guān)系是()A.相切 B.內(nèi)含 C.相離 D.相交4.某防疫站對學(xué)生進(jìn)行身體健康調(diào)查,與采用分層抽樣的辦法抽取樣本.某中學(xué)共有學(xué)生2000名,抽取了一個容量為200的樣本,樣本中男生103人,則該中學(xué)共有女生()A.1030人 B.97人 C.950人 D.970人5.在邊長為1的正方體中,,,分別是棱,,的中點(diǎn),是底面內(nèi)一動點(diǎn),若直線與平面沒有公共點(diǎn),則三角形面積的最小值為()A.1 B. C. D.6.從裝有兩個紅球和兩個黑球的口袋里任取兩個球,那么對立的兩個事件是()A.“至少有一個黑球”與“都是黑球”B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球”D.“至少有一個黑球”與“都是紅球”7.已知的三個內(nèi)角之比為,那么對應(yīng)的三邊之比等于()A. B. C. D.8.已知圓,圓,則圓與圓的位置關(guān)系是()A.相離 B.相交 C.外切 D.內(nèi)切9.在一段時間內(nèi),某種商品的價格(元)和銷售量(件)之間的一組數(shù)據(jù)如下表:價格(元)4681012銷售量(件)358910若與呈線性相關(guān)關(guān)系,且解得回歸直線的斜率,則的值為()A.0.2 B.-0.7 C.-0.2 D.0.710.已知集合A={x︱x>-2}且,則集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則與的夾角等于_______.12.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當(dāng)下一次分針與時針重合時,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于_______.13.已知函數(shù),它的值域是__________.14.已知函數(shù)的最小正周期為,且的圖象過點(diǎn),則方程所有解的和為________.15.《九章算術(shù)》中,將底面為長方形且由一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑,平面,,三棱錐的四個頂點(diǎn)都在球的球面上,則球的表面積為__________.16.棱長為,各面都為等邊三角形的四面體內(nèi)有一點(diǎn),由點(diǎn)向各面作垂線,垂線段的長度分別為,則=______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,底面ABC,D是PC的中點(diǎn),已知,,,,求:(1)三棱錐的體積;(2)異面直線BC與AD所成的角的余弦值大小.18.已知函數(shù).(1)求的值;(2)若,求的取值范圍.19.如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)在上,點(diǎn)在上,設(shè)矩形的面積為,(1)按下列要求寫出函數(shù)的關(guān)系式:①設(shè),將表示成的函數(shù)關(guān)系式;②設(shè),將表示成的函數(shù)關(guān)系式,(2)請你選用(1)中的一個函數(shù)關(guān)系式,求出的最大值.20.已知函數(shù).(1)求函數(shù)的單調(diào)減區(qū)間.(2)求函數(shù)的最大值并求取得最大值時的的取值集合.(3)若,求的值.21.已知圓.(1)過原點(diǎn)的直線被圓所截得的弦長為2,求直線的方程;(2)過外的一點(diǎn)向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),若,求使最短時的點(diǎn)坐標(biāo).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】.2、C【解析】

設(shè)長方體過一個頂點(diǎn)的三條棱長分別為,,,由已知面積求得,,的值,得到長方體對角線長,進(jìn)一步得到外接球的半徑,則答案可求.【詳解】設(shè)長方體過一個頂點(diǎn)的三條棱長分別為,,,則,解得,,.長方體的對角線長為.則長方體的外接球的半徑為,此長方體的外接球的表面積等于.故選:C.【點(diǎn)睛】本題考查長方體外接球表面積的求法,考查空間想象能力和運(yùn)算求解能力,求解時注意長方體的對角線長為長方體外接球的直徑.3、D【解析】

寫出兩圓的圓心,根據(jù)兩點(diǎn)間距離公式求得兩圓心的距離,發(fā)現(xiàn),所以兩圓相交。比較三者之間大小判斷位置關(guān)系。【詳解】兩圓的圓心分別為:,,半徑分別為:,,兩圓心距為:,所以,兩圓相交,選D?!军c(diǎn)睛】通過比較圓心距和半徑和與半徑差直接的關(guān)系判斷,即比較三者之間大小。4、D【解析】由分層抽樣的辦法可知在名學(xué)生中抽取的男生有,故女生人數(shù)為,應(yīng)選答案D.5、D【解析】

根據(jù)直線與平面沒有公共點(diǎn)可知平面.將截面補(bǔ)全后,可確定點(diǎn)的位置,進(jìn)而求得三角形面積的最小值.【詳解】由題意,,分別是棱,,的中點(diǎn),補(bǔ)全截面為,如下圖所示:因?yàn)橹本€與平面沒有公共點(diǎn)所以平面,即平面,平面平面此時位于底面對角線上,且當(dāng)與底面中心重合時,取得最小值此時三角形的面積最小故選:D【點(diǎn)睛】本題考查了直線與平面平行、平面與平面平行的性質(zhì)與應(yīng)用,過定點(diǎn)截面的作法,屬于難題.6、D【解析】

寫出所有等可能事件,求出事件“至少有一個黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對立.【詳解】記兩個黑球?yàn)?,兩個紅球?yàn)?,則任取兩球的所有等可能結(jié)果為:,記事件A為“至少有一個黑球”,事件為:“都是紅球”,則,因?yàn)?,所以事件與事件互為對立事件.【點(diǎn)睛】本題考查古典概型和對立事件的判斷,利用兩事件的概率和為1是判斷對立事件的常用方法.7、D【解析】∵已知△ABC的三個內(nèi)角之比為,∴有,再由,可得,故三內(nèi)角分別為.再由正弦定理可得三邊之比,故答案為點(diǎn)睛:本題考查正弦定理的應(yīng)用,結(jié)合三角形內(nèi)角和等于,很容易得出三個角的大小,利用正弦定理即出結(jié)果8、C【解析】,,,,,即兩圓外切,故選.點(diǎn)睛:判斷圓與圓的位置關(guān)系的常見方法(1)幾何法:利用圓心距與兩半徑和與差的關(guān)系.(2)切線法:根據(jù)公切線條數(shù)確定.(3)數(shù)形結(jié)合法:直接根據(jù)圖形確定9、C【解析】

由題意利用線性回歸方程的性質(zhì)計(jì)算可得的值.【詳解】由于,,由于線性回歸方程過樣本中心點(diǎn),故:,據(jù)此可得:.故選C.【點(diǎn)睛】本題主要考查線性回歸方程的性質(zhì)及其應(yīng)用,屬于中等題.10、D【解析】

A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合題意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合題意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合題意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,與題意相符,

故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由已知向量的坐標(biāo)求得兩向量的模及數(shù)量積,代入數(shù)量積求夾角公式得答案.【詳解】∵(﹣1,),(,﹣1),∴,,則cos,∴與的夾角等于.故答案為:.【點(diǎn)睛】本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是基礎(chǔ)題.12、.【解析】

設(shè)時針轉(zhuǎn)過的角的弧度數(shù)為,可知分針轉(zhuǎn)過的角為,于此得出,由此可計(jì)算出的值,從而可得出時針轉(zhuǎn)過的弧度數(shù)的絕對值的值.【詳解】設(shè)時針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于,故答案為.【點(diǎn)睛】本題考查弧度制的應(yīng)用,主要是要弄清楚時針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問題和計(jì)算能力,屬于中等題.13、【解析】

由反余弦函數(shù)的值域可求出函數(shù)的值域.【詳解】,,因此,函數(shù)的值域?yàn)?故答案為:.【點(diǎn)睛】本題考查反三角函數(shù)值域的求解,解題的關(guān)鍵就是依據(jù)反余弦函數(shù)的值域進(jìn)行計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】

由周期求出,由圖象的所過點(diǎn)的坐標(biāo)求得,【詳解】由題意,又,且,∴,,由得或,又,,∴或,或,兩根之和為.故答案為:.【點(diǎn)睛】本題考查求三角函數(shù)的解析式,考查解三角方程.掌握正切函數(shù)的性質(zhì)是解題關(guān)鍵.15、【解析】

由題意得該四面體的四個面都為直角三角形,且平面,可得,.因?yàn)闉橹苯侨切?,可得,所以,因此,結(jié)合幾何關(guān)系,可求得外接球的半徑,,代入公式即可求球的表面積.【詳解】本題主要考查空間幾何體.由題意得該四面體的四個面都為直角三角形,且平面,,,,.因?yàn)闉橹苯侨切?,因此或(舍).所以只可能是,此時,因此,所以平面所在小圓的半徑即為,又因?yàn)?,所以外接球的半徑,所以球的表面積為.【點(diǎn)睛】本題考查三棱錐的外接球問題,難點(diǎn)在于確定BC的長,即得到,再結(jié)合幾何性質(zhì)即可求解,考查學(xué)生空間想象能力,邏輯推理能力,計(jì)算能力,屬中檔題.16、.【解析】

根據(jù)等積法可得∴三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)先求出,然后由底面ABC得,即可算出答案(2)取的中點(diǎn),可得是異面直線BC與AD所成的角(或其補(bǔ)角),然后在中,用余弦定理即可算出【詳解】(1)因?yàn)?,,所以因?yàn)榈酌鍭BC,所以(2)如圖,取的中點(diǎn),連接,則所以是異面直線BC與AD所成的角(或其補(bǔ)角)在中,所以由余弦定理得所以異面直線BC與AD所成的角的余弦值大小為【點(diǎn)睛】求異面直線所成的角是將直線平移轉(zhuǎn)化為相交直線所成的角,要注意異面直線所成角的范圍是.18、(1);(2)【解析】

(1)將)化簡為,代入從而求得結(jié)果.(2)由,得,從而確定的范圍.【詳解】(1)(2)由,得解得,,即的取值范圍是【點(diǎn)睛】本題主要考查三角函數(shù)的化簡求值,不等式的求解,意在考查學(xué)生的運(yùn)算能力和分析能力,難度不大.19、(Ⅰ),;(Ⅱ).【解析】試題分析:(1)①通過求出矩形的邊長,求出面積的表達(dá)式;②利用三角函數(shù)的關(guān)系,求出矩形的鄰邊,求出面積的表達(dá)式;(2)利用(1)②的表達(dá)式,化為一個角的一個三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值.試題解析:(1)①因?yàn)椋?,所以,.②?dāng)時,,則,又,所以,所以,().(2)由②得,,當(dāng)時,取得最大值為.考點(diǎn):1.三角函數(shù)中的恒等變換;2.兩角和與差的正弦函數(shù).【方法點(diǎn)睛】本題主要考查的是函數(shù)解析式的求法,三角函數(shù)的最值的確定,三角函數(shù)公式的靈活運(yùn)用,計(jì)算能力,屬于中檔題,此題是課本題目的延伸,如果(2)選擇(1)①中的解析式,需要用到導(dǎo)數(shù)求解,麻煩,不是命題者的本意,因此正確的選擇是選擇(1)②中的解析式,化成一個角的一個三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值,此類題目選擇正確的解析式是求解容易與否的關(guān)鍵.20、(1).(2)最大值是2,取得最大值時的的取值集合是.(3)【解析】

(1)利用三角恒等變換化簡的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)區(qū)間;(2)根據(jù)的解析式以及正弦函數(shù)的最值,求得函數(shù)的最大值,以及取得最大值時的的取值集合;(3)根據(jù)題設(shè)條件求得,再利用二倍角的余弦公式求的值.【詳解】(1),令,解得,所以的單調(diào)遞減區(qū)間為;(2)由(1)知,故的最大值為2,此時,,解得,所以的最大值是2,取得最大值時的的取值集合是;(3),即,所以,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的恒等變換,考查正弦型函數(shù)的圖象和性質(zhì),熟練掌握正弦型函數(shù)的圖象和性質(zhì)是答題關(guān)鍵,屬于中檔題.21、(1)或;(2)【解析】

(1)利用垂徑定理求出圓心到直線的距離,再分過原點(diǎn)的直線的斜率不存在與存在兩種情況,分別根據(jù)點(diǎn)到線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論