2023-2024學年江蘇省江陰市長涇片市級名校中考四模數(shù)學試題含解析_第1頁
2023-2024學年江蘇省江陰市長涇片市級名校中考四模數(shù)學試題含解析_第2頁
2023-2024學年江蘇省江陰市長涇片市級名校中考四模數(shù)學試題含解析_第3頁
2023-2024學年江蘇省江陰市長涇片市級名校中考四模數(shù)學試題含解析_第4頁
2023-2024學年江蘇省江陰市長涇片市級名校中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省江陰市長涇片市級名校中考四模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)2.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°3.用加減法解方程組時,若要求消去,則應()A. B. C. D.4.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.5.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.6.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.7.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a2?a4=a68.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.9.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°10.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數(shù)圖象大致形狀是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.化簡的結果是_______________.12.觀光塔是濰坊市區(qū)的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.13.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.14.已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2018次翻轉之后,點B的坐標是______.15.計算的結果是____.16.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.17.計算:cos245°-tan30°sin60°=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.判斷直線CD和⊙O的位置關系,并說明理由.過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.19.(5分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.20.(8分)由于霧霾天氣趨于嚴重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經過市場銷售后發(fā)現(xiàn):在一個月內,當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式及售價x的取值范圍;售價(元/臺)月銷售量(臺)400200250x(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?21.(10分)在等邊△ABC外側作直線AM,點C關于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數(shù).22.(10分)如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數(shù)據(jù):≈1.73)23.(12分)先化簡,再求值:,其中x為方程的根.24.(14分)如圖,在平面直角坐標系中,一次函數(shù)y=﹣12x+3的圖象與反比例函數(shù)y=kx(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點.求反比例函數(shù)的表達式;點C是第一象限內一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數(shù)形結合思想解題是本題的解題關鍵.2、A【解析】

直接根據(jù)圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.3、C【解析】

利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應①×5+②×3,

故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.4、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.5、C【解析】

根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉化為一般規(guī)律是解決本題的關鍵.6、A【解析】

本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關鍵.7、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關鍵是掌握各計算法則.8、B【解析】

根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.9、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質、三角形外角的性質、圓的基本性質.10、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學生從圖象中讀取信息的數(shù)形結合能力,體現(xiàn)了分類討論的思想.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.12、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.13、1【解析】

根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.14、(4033,)【解析】

根據(jù)正六邊形的特點,每6次翻轉為一個循環(huán)組循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定出點B的位置,經過第2017次翻轉之后,點B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點B離原點的距離為4032,所以經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經過2018次翻轉之后點B的坐標.然后求出翻轉前進的距離,過點C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點C的坐標即可.【詳解】設2018次翻轉之后,在B′點位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,∴每6次翻轉為一個循環(huán)組,∵2018÷6=336余2,∴經過2016次翻轉為第336個循環(huán),點B在初始狀態(tài)時的位置,而第2017次翻轉之后,點B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點B離原點的距離=2×2016=4032,∴經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置,則△BB′C為等邊三角形,此時BN=NC=1,B′N=,故經過2018次翻轉之后,點B的坐標是:(4033,).故答案為(4033,).【點睛】本題考查的是正多邊形和圓,涉及到坐標與圖形變化-旋轉,正六邊形的性質,確定出最后點B所在的位置是解題的關鍵.15、【解析】原式=,故答案為.16、x1=1,x2=﹣1.【解析】

直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點睛】本題考查了二次函數(shù)與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.17、0【解析】

直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.三、解答題(共7小題,滿分69分)18、解:(1)直線CD和⊙O的位置關系是相切,理由見解析(2)BE=1.【解析】試題分析:(1)連接OD,可知由直徑所對的圓周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,從而得∠CDO=90°,根據(jù)切線的判定即可得出;(2)由已知利用勾股定理可求得DC的長,根據(jù)切線長定理有DE=EB,根據(jù)勾股定理得出方程,求出方程的解即可.試題解析:(1)直線CD和⊙O的位置關系是相切,理由是:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直線CD是⊙O的切線,即直線CD和⊙O的位置關系是相切;(2)∵AC=2,⊙O的半徑是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,設DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,則(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考點:1、切線的判定與性質;2、切線長定理;3、勾股定理;4、圓周角定理19、;.【解析】

(1)由正方形的性質可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;

(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.【點睛】二次函數(shù)的綜合應用.解題的關鍵是:在(1)中確定出B、C的坐標是解題的關鍵,在(2)中把四邊形轉化成兩個三角形.20、(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售價定位320元時,利潤最大,為3元.【解析】

(1)根據(jù)題中條件可得390,1-5x,若銷售價每降低10元,月銷售量就可多售出50千克,即可列出函數(shù)關系式;根據(jù)供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售即可求出x的取值.(2)用x表示y,然后再用x來表示出w,根據(jù)函數(shù)關系式,即可求出最大w.【詳解】(1)依題意得:y=200+50×.化簡得:y=-5x+1.(2)依題意有:∵,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2內,∴當x=320時,w最大=3.即售價定為320元/臺時,可獲得最大利潤為3元.【點睛】本題考查了利潤率問題的數(shù)量關系的運用,一次函數(shù)的解析式的運用,二次函數(shù)的解析式的運用,一元二次方程的解法的運用,解答時求出二次函數(shù)的解析式時關鍵.21、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】

(1)根據(jù)軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內角和得出x+y即可得出結論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結論.【詳解】(1)補全圖形如圖1所示,根據(jù)軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質,軸對稱的性質,等腰三角形的性質,三角形的內角和定理,作出圖形是解本題的關鍵.22、公路的寬為20.5米.【解析】

作CD⊥AE,設CD=x米,由∠CBD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論