浙江省武義第三中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第1頁
浙江省武義第三中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第2頁
浙江省武義第三中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第3頁
浙江省武義第三中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第4頁
浙江省武義第三中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省武義第三中學2025屆高一數(shù)學第二學期期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將一邊長為2的正方形沿對角線折起,若頂點落在同一個球面上,則該球的表面積為()A. B. C. D.2.若函數(shù)()有兩個不同的零點,則實數(shù)m的取值范圍是()A. B. C. D.3.的周期為()A. B. C. D.4.在區(qū)間上隨機地取一個數(shù),則事件“”發(fā)生的概率為()A. B. C. D.5.已知,那么等于()A. B. C. D.56.我國古代數(shù)學名著九章算術記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側視圖為等腰三角形則它的體積為A. B.160 C. D.647.已知三個內(nèi)角、、的對邊分別是,若,則等于()A. B. C. D.8.若||=2cos15°,||=4sin15°,的夾角為30°,則等于()A. B. C.2 D.9.已知圓,設平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.4910.若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則an=_____12.某單位共有200名職工參加了50公里徒步活動,其中青年職工與老年職工的人數(shù)比為,中年職工有24人,現(xiàn)采取分層抽樣的方法抽取50人參加對本次活動滿意度的調查,那么應抽取老年職工的人數(shù)為________人.13.在中,給出如下命題:①是所在平面內(nèi)一定點,且滿足,則是的垂心;②是所在平面內(nèi)一定點,動點滿足,,則動點一定過的重心;③是內(nèi)一定點,且,則;④若且,則為等邊三角形,其中正確的命題為_____(將所有正確命題的序號都填上)14.函數(shù)的最小正周期為__________.15.若直線的傾斜角為,則______.16.設,則等于________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期;(2)當時,求的值域.18.己知向量,,設函數(shù),且的圖象過點和點.(1)當時,求函數(shù)的最大值和最小值及相應的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.19.某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識.組織方從參加活動的1000名群眾中隨機抽取n名群眾,按他們的年齡分組:第1組,第2組,第3組,第4組,第5組,其中第1組有6人,得到的頻率分布直方圖如圖所示.(1)求m,n的值,并估計抽取的n名群眾中年齡在的人數(shù);(2)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取3名群眾組成維權志愿者服務隊,求至少有兩名女生的概率.20.已知函數(shù),為實數(shù).(1)若對任意,都有成立,求實數(shù)的值;(2)若,求函數(shù)的最小值.21.已知分別是銳角三個內(nèi)角的對邊,且,且.(Ⅰ)求的值;(Ⅱ)求面積的最大值;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

令正方形對角線與的交點為,如圖所示:由正方形中,,則,那么,將正方形沿對角線折起,如圖所示:則點為三棱錐的外接球的球心,且半徑為,故外接球的表面積為.故選:D【點睛】本題考查了多面體的外接球問題以及球的表面積公式,屬于基礎題.2、A【解析】

函數(shù)()有兩個不同的零點等價于函數(shù)在均有一個解,再解不等式即可.【詳解】解:因為,由函數(shù)()有兩個不同的零點,則函數(shù)在均有一個解,則,解得:,故選:A.【點睛】本題考查了分段函數(shù)的零點問題,重點考查了分式不等式的解法,屬中等題.3、D【解析】

根據(jù)正弦型函數(shù)最小正周期的結論即可得到結果.【詳解】函數(shù)的最小正周期故選:【點睛】本題考查正弦型函數(shù)周期的求解問題,關鍵是明確正弦型函數(shù)的最小正周期.4、A【解析】由得,,所以,由幾何概型概率的計算公式得,,故選.考點:1.幾何概型;2.對數(shù)函數(shù)的性質.5、B【解析】

因為,所以,故選B.6、A【解析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側視圖,確定組合體的形狀.7、D【解析】

根據(jù)正弦定理把邊化為對角的正弦求解.【詳解】【點睛】本題考查正弦定理,邊角互換是正弦定理的重要應用,注意增根的排除.8、B【解析】分析:先根據(jù)向量數(shù)量積定義化簡,再根據(jù)二倍角公式求值.詳解:因為,所以選B.點睛:平面向量數(shù)量積的類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式;二是坐標公式;三是利用數(shù)量積的幾何意義.(2)求較復雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關公式進行化簡.9、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當圓心C位于B點時,取得最大值,B點的坐標為,即時是最大值.考點:線性規(guī)劃綜合問題.10、D【解析】.分子分母同時除以,即得:.故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用等比數(shù)列的前n項和公式列出方程組,求出首項與公比,由此能求出該數(shù)列的通項公式.【詳解】由題意,,不合題意舍去;當?shù)缺葦?shù)列的前n項和為,即,解得,所以,故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.12、4【解析】

直接利用分層抽樣的比例關系得到答案.【詳解】青年職工與老年職工的人數(shù)比為,中年職工有24人,故老年職工為,故應抽取老年職工的人數(shù)為.故答案為:.【點睛】本題考查了分層抽樣的相關計算,意在考查學生的計算能力.13、①②④.【解析】

①:運用已知的式子進行合理的變形,可以得到,進而得到,再次運用等式同樣可以得到,,這樣可以證明出是的垂心;②:運用平面向量的減法的運算法則、加法的幾何意義,結合平面向量共線定理,可以證明本命題是真命題;③:運用平面向量的加法的幾何意義以及平面向量共線定理,結合面積公式,可證明出本結論是錯誤的;④:運用平面向量的加法幾何意義和平面向量的數(shù)量積的定義,可以證明出本結論是正確的.【詳解】①:,同理可得:,,所以本命題是真命題;②:,設的中點為,所以有,因此動點一定過的重心,故本命題是真命題;③:由,可得設的中點為,,,故本命題是假命題;④:由可知角的平分線垂直于底邊,故是等腰三角形,由可知:,所以是等邊三角形,故本命題是真命題,因此正確的命題為①②④.【點睛】本題考查了平面向量的加法的幾何意義和平面向量數(shù)量積的運算,考查了數(shù)形結合思想.14、【解析】

用輔助角公式把函數(shù)解析式化成正弦型函數(shù)解析式的形式,最后利用正弦型函數(shù)的最小正周期的公式求出最小正周期.【詳解】,函數(shù)的最小正周期為.【點睛】本題考查了輔助角公式,考查了正弦型函數(shù)最小正周期公式,考查了數(shù)學運算能力.15、【解析】

首先利用直線方程求出直線斜率,通過斜率求出傾斜角.【詳解】由題知直線方程為,所以直線的斜率,又因為傾斜角,所以傾斜角.故答案為:.【點睛】本題主要考查了直線傾斜角與直線斜率的關系,屬于基礎題.16、【解析】

首先根據(jù)題中求出的周期,然后利用周期性即可求出答案.【詳解】由題知,有,故的周期為,故,又因為,有.故答案為:.【點睛】本題考查了三角函數(shù)的周期性,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)展開兩角差的正弦,再由輔助角公式化簡,利用周期公式求周期;(2)由x的范圍求出相位的范圍,再由正弦函數(shù)的有界性求f(x)的值域.【詳解】(1),;(2),∴,∴,的值域為.【點睛】本題考查兩角和與差的三角函數(shù),三角函數(shù)的周期性,三角函數(shù)值域等問題,考查三角函數(shù)和差公式、二倍角公式及圖像與性質的應用,難度不大,綜合性較強,屬于簡單題.18、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】

(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當時,解出的范圍,根據(jù)三角函數(shù)性質,可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當時,在有兩個不同的解∴,即.【點睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計算能力,考查轉化與化歸思想,考查數(shù)形結合思想,屬于中等題型.19、(1),,年齡在的人數(shù)為(2)【解析】

(1)根據(jù)第一組的頻數(shù)和頻率可得,由所有頻率和為1可得,再求得間的頻率后可得人數(shù);(2)把第一組人數(shù)編號,如男性為,女性為,然后用列舉法寫出任取3人的所有基本事件及至少有兩名女生的基本事件,計數(shù)后可得所求概率.【詳解】(1),設第2組的頻率為f,,所以,第3組和第4組的頻率為,年齡在的人數(shù)為;(2)記第1組中的男性為,女性為,隨機抽取3名群眾的基本事件是:,,共20種;其中至少有兩名女性的基本事件是:共16種.所以至少有兩名女性的概率為.【點睛】本題考查頻率分布直方圖,考查古典概型.解題關鍵是掌握性質:頻率分布直方圖中所有頻率(小矩形面積)之和為1.20、(1);(2).【解析】

(1)根據(jù)二次函數(shù)的解析式寫出對稱軸即可;(2)根據(jù)對稱軸是否在定義域內(nèi)進行分類討論,由二次函數(shù)的圖象可分別得出函數(shù)的最小值.【詳解】(1)對任意,都有成立,則函數(shù)的對稱軸為,即,解得實數(shù)的值為.(2)二次函數(shù),開

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論