版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省哈爾濱市哈爾濱師大附中2025屆高一下數(shù)學(xué)期末綜合測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,已知,則的面積為()A. B. C. D.2.如圖所示,已知正三棱柱的所有棱長(zhǎng)均為1,則三棱錐的體積為()A. B. C. D.3.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角4.已知,則滿足的關(guān)系式是A.,且 B.,且C.,且 D.,且5.在下列各圖中,每個(gè)圖的兩個(gè)變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)6.若函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是A.或 B.C.或 D.7.已知直線yx+2,則其傾斜角為()A.60° B.120° C.60°或120° D.150°8.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù).例如:,,已知函數(shù),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.9.某同學(xué)使用計(jì)算器求30個(gè)數(shù)據(jù)的平均數(shù)時(shí),錯(cuò)將其中一個(gè)數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實(shí)際平均數(shù)的差是()A.3.5 B.3 C.-0.5 D.-310.在中,角,,所對(duì)的邊分別為,,,若,則最大角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知在中,,則____________.12.在直三棱柱中,,,,則異面直線與所成角的余弦值是_____________.13.英國(guó)物理學(xué)家和數(shù)學(xué)家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設(shè)這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對(duì)數(shù)的底數(shù)).則從開始冷卻,經(jīng)過5分鐘時(shí)間這杯水的溫度是________(單位:℃).14.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點(diǎn),BC=CA=CC1,則BM與AN所成的角的余弦值為.15.已知是邊長(zhǎng)為4的等邊三角形,為平面內(nèi)一點(diǎn),則的最小值為__________.16.如圖,在直四棱柱中,,,,分別為的中點(diǎn),平面平面.給出以下幾個(gè)說法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號(hào)是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對(duì)的邊分別為,,,若,且為鈍角,,求面積的最大值.18.如圖.在四棱錐中,,,平面ABCD,且.,,M、N分別為棱PC,PB的中點(diǎn).(1)證明:A,D,M,N四點(diǎn)共面,且平面ADMN;(2)求直線BD與平面ADMN所成角的正弦值.19.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.20.已知點(diǎn)A(1,2),B(3,1),C(2,2),D(1,m)(1)若向量∥,求實(shí)數(shù)m的值;(2)若m=3,求向量與的夾角.21.已知函數(shù)(1)解不等式;(2)若對(duì)一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)三角形的面積公式求解即可.【詳解】的面積.
故選:B【點(diǎn)睛】本題主要考查了三角形的面積公式,屬于基礎(chǔ)題.2、A【解析】
利用等體法即可求解.【詳解】三棱錐的體積等于三棱錐的體積,因此,三棱錐的體積為,故選:A.【點(diǎn)睛】本題考查了等體法求三棱錐的體積、三棱錐的體積公式,考查了轉(zhuǎn)化與化歸思想的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】
本題首先要明確平面直角坐標(biāo)系中每一象限所對(duì)應(yīng)的角的范圍,然后即可判斷出在哪一象限中.【詳解】第一象限所對(duì)應(yīng)的角為;第二象限所對(duì)應(yīng)的角為;第三象限所對(duì)應(yīng)的角為;第四象限所對(duì)應(yīng)的角為;因?yàn)?,所以位于第三象限,故選C.【點(diǎn)睛】本題考查如何判斷角所在象限,能否明確每一象限所對(duì)應(yīng)的角的范圍是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題.4、B【解析】
根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)判斷.【詳解】∵,∴,∵,∴,又,∴,故選B.【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì),掌握對(duì)數(shù)函數(shù)的單調(diào)性是解題關(guān)鍵.5、D【解析】
仔細(xì)觀察圖象,尋找散點(diǎn)圖間的相互關(guān)系,主要觀察這些散點(diǎn)是否圍繞一條曲線附近排列著,由此能夠得到正確答案.【詳解】散點(diǎn)圖(1)中,所有的散點(diǎn)都在曲線上,所以(1)具有函數(shù)關(guān)系;
散點(diǎn)圖(2)中,所有的散點(diǎn)都分布在一條直線的附近,所以(2)具有相關(guān)關(guān)系;
散點(diǎn)圖(3)中,所有的散點(diǎn)都分布在一條曲線的附近,所以(3)具有相關(guān)關(guān)系,
散點(diǎn)圖(4)中,所有的散點(diǎn)雜亂無章,沒有分布在一條曲線的附近,所以(4)沒有相關(guān)關(guān)系.
故選D.【點(diǎn)睛】本題考查散點(diǎn)圖和相關(guān)關(guān)系,是基礎(chǔ)題.6、A【解析】
根據(jù)題意,原題等價(jià)于,再討論即可得到結(jié)論.【詳解】由題,故函數(shù)有一個(gè)零點(diǎn)等價(jià)于即當(dāng)時(shí),,,符合題意;當(dāng),時(shí),令,滿足解得,綜上的取值范圍是或故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),對(duì)數(shù)函數(shù)的性質(zhì),二次函數(shù)根的分布問題,考查了分類討論思想,屬于中檔題.7、B【解析】
根據(jù)直線方程求出斜率,根據(jù)斜率和傾斜角之間的關(guān)系即可求出傾斜角.【詳解】由已知得直線的斜率,則傾斜角為120°,故選:B.【點(diǎn)睛】本題考查斜率和傾斜角的關(guān)系,是基礎(chǔ)題.8、D【解析】
分離常數(shù)法化簡(jiǎn)f(x),根據(jù)新定義即可求得函數(shù)y=[f(x)]的值域.【詳解】,又>0,∴,∴∴當(dāng)x∈(1,1)時(shí),y=[f(x)]=1;當(dāng)x∈[1,)時(shí),y=[f(x)]=1.∴函數(shù)y=[f(x)]的值域是{1,1}.故選D.【點(diǎn)睛】本題考查了新定義的理解和應(yīng)用,考查了分離常數(shù)法求一次分式函數(shù)的值域,是中檔題.9、D【解析】
因?yàn)殄e(cuò)將其中一個(gè)數(shù)據(jù)105輸入為15,所以此時(shí)求出的數(shù)比實(shí)際的數(shù)差是,因此平均數(shù)之間的差是.故答案為D10、D【解析】
設(shè),由余弦定理可求出.【詳解】設(shè),所以最大的角為,故選D.【點(diǎn)睛】本題主要考查了余弦定理,大邊對(duì)大角,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)可得,根據(jù)商數(shù)關(guān)系和平方關(guān)系可解得結(jié)果.【詳解】因?yàn)?,所以且,又,所以,所以,因?yàn)?,所?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的符號(hào)法則,考查了同角公式中的商數(shù)關(guān)系和平方關(guān)系式,屬于基礎(chǔ)題.12、【解析】
先找出線面角,運(yùn)用余弦定理進(jìn)行求解【詳解】連接交于點(diǎn),取中點(diǎn),連接,則,連接為異面直線與所成角在中,,,同理可得,,異面直線與所成角的余弦值是故答案為【點(diǎn)睛】本題主要考查了異面直線所成的角,考查了空間想象能力,運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.13、45【解析】
直接利用對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可,【詳解】.故答案為:45.【點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算性質(zhì),考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】試題分析:畫出圖形,找出BM與AN所成角的平面角,利用解三角形求出BM與AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點(diǎn),如圖:BC的中點(diǎn)為O,連結(jié)ON,MN,OB,∴MNOB,∴MN0B是平行四邊形,∴BM與AN所成角就是∠ANO,∵BC=CA=CC1,設(shè)BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案為.考點(diǎn):異面直線及其所成的角.15、-1.【解析】分析:可建立坐標(biāo)系,用平面向量的坐標(biāo)運(yùn)算解題.詳解:建立如圖所示的平面直角坐標(biāo)系,則,設(shè),∴,易知當(dāng)時(shí),取得最小值.故答案為-1.點(diǎn)睛:求最值問題,一般要建立一個(gè)函數(shù)關(guān)系式,化幾何最值問題為函數(shù)的最值,本題通過建立平面直角坐標(biāo)系,把向量的數(shù)量積用點(diǎn)的坐標(biāo)表示出來后,再用配方法得出最小值,根據(jù)表達(dá)式的幾何意義也能求得最大值.16、①③.【解析】
利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關(guān)系可判斷④;【詳解】對(duì)于①,由,平面平面,則,又,所以,故①正確;對(duì)于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對(duì)于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對(duì)于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點(diǎn)睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關(guān)系,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】
(1)利用二倍角和輔助角公式可化簡(jiǎn)函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:?jiǎn)握{(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號(hào))即面積的最大值為:【點(diǎn)睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識(shí);求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對(duì)應(yīng)關(guān)系來進(jìn)行求解.18、(1)證明見解析;(2)【解析】
(1)先證,再證,即可得證;要證平面ADMN,可通過求證PB垂直于ADMN中的兩條交線來證明(2)求直線BD與平面ADMN所成角,需要找出BD在平面ADMN的射影,可通過三垂線定理去進(jìn)行證明【詳解】解:(1)證明因?yàn)镸,N分別為PC,PB的中點(diǎn),所以;又因?yàn)?,所以.從而A,D,M,N四點(diǎn)共面;因?yàn)槠矫鍭BCD,平面ABCD.所以,又因?yàn)?,,所以平面PAB,從而,因?yàn)?,且N為PB的中點(diǎn),所以;又因?yàn)椋云矫鍭DMN;(2)如圖,連結(jié)DN;由(1)知平面ADMN,所以,DN為直線BD在平面ADMN內(nèi)的射影,且,所以,即為直線BD與平面ADMN所成的角:在直角梯形ABCD內(nèi),過C作于H,則四邊形ABCH為矩形;,在中,;所以,,,在中,,,,所以.綜上,直線BD與平面ADMN所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理,考查了線面角的求解方法,考查了運(yùn)算能力及空間想象能力,屬于中檔題.19、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解析】
(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計(jì)算出的值.【詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【點(diǎn)睛】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時(shí)要利用三角恒等變換思想將三角函數(shù)的解析式化簡(jiǎn),利用正弦、余弦函數(shù)的性質(zhì)求解,考查運(yùn)算求解能力,屬于中等題.20、(1)1;(2).【解析】
(1)先求出,的坐標(biāo),再根據(jù)兩向量平行坐標(biāo)交叉相乘相減等于零求解;(2)先求出,的坐標(biāo)和模,再求,的數(shù)量積,即可求向量與的夾角.【詳解】(1)因?yàn)锳(1,2),B(3,1),C(2,2),D(1,m),所以,,若向量∥,則,即,(2)若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信設(shè)備有限公司企業(yè)管理制度
- 江蘇省常熟市2024-2025學(xué)年八年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)歷史卷(含答案)
- 等離子體參數(shù)測(cè)試方法 編制說明
- 值守辦公室協(xié)議書(2篇)
- 2025年DCA-1皮革固色劑項(xiàng)目發(fā)展計(jì)劃
- 2025年魚、蝦、貝、藻類新品種合作協(xié)議書
- 成都七中??碱}數(shù)學(xué)試卷
- 廣播站工作參考計(jì)劃范文1
- 財(cái)產(chǎn)租賃協(xié)議
- 集裝箱租賃合同范本
- 《工程倫理學(xué)》配套教學(xué)課件
- 研究生英語閱讀教程(基礎(chǔ)級(jí))第三版-課后習(xí)題答案
- 文件袋、檔案袋密封條模板
- 校本課程《典籍里的中國(guó)》教案
- 四年級(jí)上冊(cè)信息技術(shù)教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領(lǐng)域必備知識(shí)技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗(yàn)收合格率
- 甲型H1N1流感防治應(yīng)急演練方案(1)
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級(jí)進(jìn)模的設(shè)計(jì)【畢業(yè)論文絕對(duì)精品】
評(píng)論
0/150
提交評(píng)論