版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
雞西市重點中學2025屆高一數(shù)學第二學期期末教學質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓2.已知向量,,則向量在向量方向上的投影為()A. B. C. D.3.已知向量,滿足,,,則()A.3 B.2 C.1 D.04.若向量,,則點B的坐標為()A. B. C. D.5.已知變量滿足約束條件,則的最大值為()A.8 B.7 C.6 D.46.過點斜率為-3的直線的一般式方程為()A. B.C. D.7.設變量滿足約束條件,則目標函數(shù)的最小值為()A. B. C. D.28.已知角的頂點在坐標原點,始邊與x軸正半軸重合,將終邊按逆時針方向旋轉后,終邊經過點,則()A. B. C. D.9.在中,,為邊上的一點,且,若為的角平分線,則的取值范圍為()A. B.C. D.10.計算()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的公差為,且,其前項和為,若滿足,,成等比數(shù)列,且,則______,______.12.某產品分甲、乙、丙三級,其中乙、丙兩級均屬次品,若生產中出現(xiàn)乙級品的概率為0.04,出現(xiàn)丙級品的概率為0.01,則對成品抽查一件抽得正品的概率為________.13.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.14.函數(shù)的定義域記作集合,隨機地投擲一枚質地均勻的正方體骰子(骰子的每個面上分別標有點數(shù),,,),記骰子向上的點數(shù)為,則事件“”的概率為________.15.已知遞增數(shù)列共有項,且各項均不為零,,如果從中任取兩項,當時,仍是數(shù)列中的項,則數(shù)列的各項和_____.16.在直角坐標系中,已知任意角以坐標原點為頂點,以軸的非負半軸為始邊,若其終邊經過點,且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知公差不為零的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求.18.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.19.如圖,是菱形,對角線與的交點為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.20.在公差不為零的等差數(shù)列中,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,設數(shù)列的前項和,求證.21.為了調查家庭的月收入與月儲蓄的情況,某居民區(qū)的物業(yè)工作人員隨機抽取該小區(qū)20個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,計算得:,,,,.(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)指出(1)中所求出方程的系數(shù),并判斷變量與之間是正相關還是負相關;(3)若該居民區(qū)某家庭月收入為9千元,預測該家庭的月儲蓄.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】原方程即即或故原方程表示兩個半圓.2、B【解析】
先計算向量夾角,再利用投影定義計算即可.【詳解】由向量,,則,,向量在向量方向上的投影為.故選:B【點睛】本題考查了向量數(shù)量積的坐標表示以及向量數(shù)量積的幾何意義,屬于基礎題.3、A【解析】
由,求出,代入計算即可.【詳解】由題意,則.故答案為A.【點睛】本題考查了向量的數(shù)量積,考查了學生的計算能力,屬于基礎題.4、B【解析】
根據(jù)向量的坐標運算得到,得到答案.【詳解】,故.故選:.【點睛】本題考查了向量的坐標運算,意在考查學生的計算能力.5、B【解析】
先畫出滿足約束條件的平面區(qū)域,然后求出目標函數(shù)取最大值時對應的最優(yōu)解點的坐標,代入目標函數(shù)即可求出答案.【詳解】滿足約束條件的平面區(qū)域如下圖所示:作直線把直線向上平移可得過點時最小當,時,取最大值1,故答案為1.【點睛】本題考查的知識點是簡單線性規(guī)劃,其中畫出滿足約束條件的平面區(qū)域,找出目標函數(shù)的最優(yōu)解點的坐標是解答本題的關鍵.6、A【解析】
由點和斜率求出點斜式方程,化為一般式方程即可.【詳解】解:過點斜率為的直線方程為,化為一般式方程為;故選:.【點睛】本題考查了由點以及斜率求點斜式方程的問題,屬于基礎題.7、B【解析】
根據(jù)不等式組畫出可行域,數(shù)形結合解決問題.【詳解】不等式組確定的可行域如下圖所示:因為可化簡為與直線平行,且其在軸的截距與成正比關系,故當且僅當目標函數(shù)經過和的交點時,取得最小值,將點的坐標代入目標函數(shù)可得.故選:B.【點睛】本題考查常規(guī)線性規(guī)劃問題,屬基礎題,注意數(shù)形結合即可.8、B【解析】
先建立角和旋轉之后得所到的角之間的聯(lián)系,再根據(jù)誘導公式和二倍角公式進行計算可得.【詳解】設旋轉之后的角為,由題得,,,又因為,所以得,故選B.【點睛】本題考查任意角的三角函數(shù)和三角函數(shù)的性質,是基礎題.9、A【解析】
先根據(jù)正弦定理用角A,C表示,再根據(jù)三角形內角關系化基本三角函數(shù)形狀,最后根據(jù)正弦函數(shù)性質得結果.【詳解】因為,為的角平分線,所以,在中,,因為,所以,在中,,因為,所以,所以,則,因為,所以,所以,則,即的取值范圍為.選A.【點睛】本題考查函數(shù)正弦定理、輔助角公式以及正弦函數(shù)性質,考查基本分析求解能力,屬中檔題.10、A【解析】
根據(jù)對數(shù)運算,即可求得答案.【詳解】故選:A.【點睛】本題主要考查了對數(shù)運算,解題關鍵是掌握對數(shù)運算基礎知識,考查了計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
由,可求出,再由,,成等比數(shù)列,可建立關系式,求出,進而求出即可.【詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因為,所以,,所以.故答案為:2;.【點睛】本題考查等比數(shù)列的性質,考查等差數(shù)列前項和的求法,考查學生的計算求解能力,屬于基礎題.12、0.95【解析】
根據(jù)抽查一件產品是甲級品、乙級品、丙級品是互為互斥事件,且三個事件對立,再根據(jù)抽得正品即為抽得甲級品的概率求解.【詳解】記事件A={甲級品},B={乙級品},C={丙級品}因為事件A,B,C互為互斥事件,且三個事件對立,所以抽得正品即為抽得甲級品的概率為故答案為:0.95【點睛】本題主要考查了互斥事件和對立事件概率的求法,還考查了運算求解的能力,屬于基礎題.13、10【解析】
根據(jù)等差數(shù)列的性質,可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.14、【解析】要使函數(shù)有意義,則且,即且,即,隨機地投擲一枚質地均勻的正方體骰子,記骰子向上的點數(shù)為,則,則事件“”的概率為.15、【解析】
∵當時,仍是數(shù)列中的項,而數(shù)列是遞增數(shù)列,∴,所以必有,,利用累加法可得:,故,得,故答案為.點睛:本題主要考查了數(shù)列的求和,解題的關鍵是單調性的利用以及累加法的運用,有一定難度;根據(jù)題中條件從中任取兩項,當時,仍是數(shù)列中的項,結合遞增數(shù)列必有,,利用累加法可得結果.16、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數(shù)的概念.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)利用等差等比基本公式,計算數(shù)列的通項公式;(2)利用裂項相消法求和.試題解析:(1)設公差為,因為,,成等數(shù)列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.18、(1)an=3n–4,(3)Sn=n3–8n,最小值為–1.【解析】分析:(1)根據(jù)等差數(shù)列前n項和公式,求出公差,再代入等差數(shù)列通項公式得結果,(3)根據(jù)等差數(shù)列前n項和公式得的二次函數(shù)關系式,根據(jù)二次函數(shù)對稱軸以及自變量為正整數(shù)求函數(shù)最值.詳解:(1)設{an}的公差為d,由題意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通項公式為an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以當n=4時,Sn取得最小值,最小值為–1.點睛:數(shù)列是特殊的函數(shù),研究數(shù)列最值問題,可利用函數(shù)性質,但要注意其定義域為正整數(shù)集這一限制條件.19、(1)證明見解析;(2)證明見解析;(3)【解析】
(1)取的中點,連接,,從而可得為平行四邊形,即可證明平面;(2)只需證明平面.即可證明平面平面;(3)作于,則為與平面所成角,在中,由余弦定理得即可.【詳解】(1)證明:取的中點,連接,,∵是菱形的對角線,的交點,∴,且,又∵,且,∴,且,從而為平行四邊形,∴,又平面,平面,∴平面;(2)∵四邊形為菱形,∴,∵,是的中點,∴,又,∴平面,又平面,∴平面平面;(3)作于,∵平面平面,∴平面,則為與平面所成角,由及四邊形為菱形,得為正三角形,則,,,∴為正三角形,從而,在中,由余弦定理,得,∴與平面所成角的余弦值為.【點睛】本題主要考查了空間線面位置關系、線面角的計算,屬于中檔題.20、(Ⅰ)(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)題意列出方程組,利用等差數(shù)列的通項公式化簡求解即可;(Ⅱ)將的通項公式代入所給等式化簡求出的通項公式,利用裂項相消法求出,由推出,由數(shù)列是遞增數(shù)列推出.【詳解】(Ⅰ)設等差數(shù)列的公差為(),因為,所以解得,所以.(Ⅱ),.因為,所以,又因為,所以數(shù)列是遞增數(shù)列,于是.綜上,.【點睛】本題考查等差數(shù)列的基本量的求解,裂項相消法求和,數(shù)列性質的應用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國電子熱管理產品行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國產業(yè)園區(qū)物業(yè)管理行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國金融押運行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國掃地機器人行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 銷售人員心態(tài)培訓課件
- 四川省眉山市2024屆高三下學期第三次診斷考試英語試題
- 家用壁式電風扇行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 中藥提取物項目可行性研究報告
- 推廣服務行業(yè)深度研究報告
- 廣西桂林市灌陽縣2021-2022學年五年級上學期英語期末試卷
- 系統(tǒng)集成類項目售后服務方案
- 小學班主任班級管理策略-高年級篇
- 西北工業(yè)大學非事業(yè)編制人員
- 托??谡Z課程托??荚嚱榻Btask
- 《質量和密度》復習課課件
- GM∕T 0018-2012 密碼設備應用接口規(guī)范
- 《光纖通信》習題解答
- 天津公司股權轉讓協(xié)議
- 鋼筋負溫度焊接工藝要求
- 開發(fā)建設項目水土保持方案編制技術問題-廣東省水土保持網
- 薄膜衰減片的仿真設計
評論
0/150
提交評論