版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省泉州市洛江區(qū)南片區(qū)中考數學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖的立體圖形,從左面看可能是()A. B.C. D.2.已知一次函數y=kx+b的圖象如圖,那么正比例函數y=kx和反比例函數y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.3.(2011?雅安)點P關于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)4.在數軸上表示不等式組的解集,正確的是()A. B.C. D.5.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.6.化簡的結果是()A.±4 B.4 C.2 D.±27.下列運算結果正確的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2?(﹣x3)=﹣x5 D.2x2÷x2=x8.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.9.若M(2,2)和N(b,﹣1﹣n2)是反比例函數y=的圖象上的兩個點,則一次函數y=kx+b的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限10.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.12二、填空題(共7小題,每小題3分,滿分21分)11.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.12.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.13.如圖,用黑白兩種顏色的紙片,按黑色紙片數逐漸增加1的規(guī)律拼成如圖圖案,則第4個圖案中有__________白色紙片,第n個圖案中有__________張白色紙片.14.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內角的度數是______.15.如圖,數軸上點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.16.與是位似圖形,且對應面積比為4:9,則與的位似比為______.17.已知A(x1,y1),B(x2,y2)都在反比例函數y=的圖象上.若x1x2=﹣4,則y1y2的值為______.三、解答題(共7小題,滿分69分)18.(10分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總人數是人,扇形C的圓心角是°;補全頻數直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?19.(5分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結果保留根號和π)20.(8分)中央電視臺的“朗讀者”節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書”,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發(fā)現,學生課外閱讀的本書最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如圖所示:本數(本)頻數(人數)頻率50.26180.36714880.16合計1(1)統(tǒng)計表中的________,________,________;請將頻數分布表直方圖補充完整;求所有被調查學生課外閱讀的平均本數;若該校八年級共有1200名學生,請你分析該校八年級學生課外閱讀7本及以上的人數.21.(10分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.22.(10分)如圖是8×8的正方形網格,A、B兩點均在格點(即小正方形的頂點)上,試在下面三個圖中,分別畫出一個以A,B,C,D為頂點的格點菱形(包括正方形),要求所畫的三個菱形互不全等.23.(12分)如圖,數軸上的點A、B、C、D、E表示連續(xù)的五個整數,對應數分別為a、b、c、d、e.(1)若a+e=0,則代數式b+c+d=;(2)若a是最小的正整數,先化簡,再求值:a+1a-2(3)若a+b+c+d=2,數軸上的點M表示的實數為m(m與a、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是.24.(14分)小新家、小華家和書店依次在東風大街同一側(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發(fā)沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數圖象如圖所示,根據圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數圖象(2)求小新路過小華家后,y1與x之間的函數關系式.(3)直接寫出兩人離小華家的距離相等時x的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據三視圖的性質即可解題.【詳解】解:根據三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.2、C【解析】試題分析:如圖所示,由一次函數y=kx+b的圖象經過第一、三、四象限,可得k>1,b<1.因此可知正比例函數y=kx的圖象經過第一、三象限,反比例函數y=的圖象經過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數的圖象;2、一次函數的圖象;3、一次函數圖象與系數的關系3、A【解析】∵關于x軸對稱的點,橫坐標相同,縱坐標互為相反數,∴點P的坐標為(3,﹣4).故選A.4、C【解析】
解不等式組,再將解集在數軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.5、B【解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.6、B【解析】
根據算術平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術平方根的意義,一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x叫做a的算術平方根,正數a有一個正的算術平方根,0的算術平方根是0,負數沒有算術平方根.7、C【解析】
直接利用整式的除法運算以及積的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A選項:x2+2x2=3x2,故此選項錯誤;B選項:(﹣2x2)3=﹣8x6,故此選項錯誤;C選項:x2?(﹣x3)=﹣x5,故此選項正確;D選項:2x2÷x2=2,故此選項錯誤.故選C.【點睛】考查了整式的除法運算以及積的乘方運算、合并同類項,正確掌握運算法則是解題關鍵.8、A【解析】
設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.9、C【解析】
把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據k、b的值確定一次函數y=kx+b的圖象經過的象限.【詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數y=kx+b的圖象經過第一、三、四象限,故選C.【點睛】本題考查了反比例函數圖象的性質以及一次函數經過的象限,根據反比例函數的性質得出k,b的符號是解題關鍵.10、C【解析】
先根據勾股定理求出BC得長,再根據銳角三角函數正弦的定義解答即可.【詳解】如圖,根據勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數的定義及勾股定理,熟知銳角三角函數正弦的定義是解決問題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3<d<7【解析】
若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.12、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】
此題主要考查了菱形的性質,勾股定理,關鍵是要熟記定理的內容并會應用.13、133n+1【解析】分析:觀察圖形發(fā)現:白色紙片在4的基礎上,依次多3個;根據其中的規(guī)律得出第n個圖案中有白色紙片即可.詳解:∵第1個圖案中有白色紙片3×1+1=4張第2個圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個圖案中有白色紙片3×4+1=13張第n個圖案中有白色紙片3n+1張,故答案為:13、3n+1.點睛:考查學生的探究能力,解題時必須仔細觀察規(guī)律,通過歸納得出結論.14、144°【解析】
根據多邊形內角和公式計算即可.【詳解】解:由題知,這是一個10邊形,根據多邊形內角和公式:每個內角等于.故答案為:144°.【點睛】此題重點考察學生對多邊形內角和公式的應用,掌握計算公式是解題的關鍵.15、1【解析】∵點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.16、2:1【解析】
由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.17、﹣1.【解析】
根據反比例函數圖象上點的坐標特征得到再把它們相乘,然后把代入計算即可.【詳解】根據題意得所以故答案為:?1.【點睛】考查反比例函數圖象上點的坐標特征,把點的坐標代入反比例函數解析式得到是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)300、144;(2)補全頻數分布直方圖見解析;(3)該校創(chuàng)新意識不強的學生約有528人.【解析】
(1)由D組頻數及其所占比例可得總人數,用360°乘以C組人數所占比例可得;
(2)用總人數分別乘以A、B組的百分比求得其人數,再用總人數減去A、B、C、D的人數求得E組的人數可得;
(3)用總人數乘以樣本中A、B組的百分比之和可得.【詳解】解:(1)抽取學生的總人數為78÷26%=300人,扇形C的圓心角是360°×=144°,故答案為300、144;(2)A組人數為300×7%=21人,B組人數為300×17%=51人,則E組人數為300﹣(21+51+120+78)=30人,補全頻數分布直方圖如下:(3)該校創(chuàng)新意識不強的學生約有2200×(7%+17%)=528人.【點睛】考查了頻數(率)分布直方圖:提高讀頻數分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.19、(1)證明見解析(2)﹣6π【解析】
(1)直接利用切線的判定方法結合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF?tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA?sin30°=3,EA=DA?cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD==.【點睛】此題主要考查了切線的判定,圓周角定理,等邊三角形的判定與性質,解直角三角形及扇形面積求法等知識,得出S△ACD=S△COD是解題關鍵.20、(1)10,0.28,50(2)圖形見解析(3)6.4(4)528【解析】分析:(1)首先求出總人數,再根據頻率,總數,頻數的關系即可解決問題;(2)根據a的值畫出條形圖即可;(3)根據平均數的定義計算即可;(4)用樣本估計總體的思想解決問題即可;詳解:(1)由題意c==50,a=50×0.2=10,b==0.28,c=50;故答案為10,0.28,50;(2)將頻數分布表直方圖補充完整,如圖所示:(3)所有被調查學生課外閱讀的平均本數為:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)該校七年級學生課外閱讀7本及以上的人數為:(0.28+0.16)×1200=528(人).點睛:本題考查頻數分布直方圖、扇形統(tǒng)計圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考常考題型.21、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據平移的性質得出平移后的圖從而得到點的坐標;(2)根據位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理22、見解析【解析】
根據菱形的四條邊都相等,兩條對角線互相垂直平分,可以根據正方形的四邊垂直,將小正方形的邊作為對角線畫菱形;也可以畫出以AB為邊長的正方形,據此相信你可以畫出圖形了,注意:本題答案不唯一.【詳解】如圖為畫出的菱形:【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法;解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.本題掌握菱形的定義與性質是解題的關鍵.23、(1)0;(1)a+2a+1,3【解析】
(1)根據a+e=0,可知a與e互為相反數,則c=0,可得b=-1,d=1,代入可得代數式b+c+d的值;(1)根據題意可得:a=1,將分式計算并代入可得結論即可;(3)先根據A、B、C、D、E為連續(xù)整數,即可求出a的值,再根據MA+MD=3,列不等式可得結論.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024個人民間借款合同范本格式
- 2024年度家具搬運與安裝合同
- 職業(yè)危害課件教學課件
- 2024年建筑工程抹灰班組承包合同
- 2024年度財務咨詢與審計服務協(xié)議
- 煙花創(chuàng)意課件教學課件
- 2024健身器材代銷合同
- 2024年度汽車銷售代理協(xié)議
- 2024年度環(huán)保項目工程咨詢服務合同
- 2024品牌授權與加盟合作協(xié)議
- 鞍鋼鲅魚圈鋼鐵基地項目設計方案
- 《區(qū)塊鏈應用技術》課程教學大綱
- 工程變更洽商記錄樣板
- 內蒙古蒙特威生物科技有限公司3000噸酪蛋白及衍生產品項目環(huán)評報告表
- 12河北安裝定額說明和計算規(guī)則
- [中建]鄭州機場航站樓擴建工程施工組織設計(圖文158頁)
- 呼和浩特市智慧城市建設情況216(共8頁)
- 裝配式建筑PPT培訓講義(圖文并茂)
- 油庫設計-畢業(yè)設計論文
- 新教材高中歷史選擇性必修一全冊知識點總結
- (完整)學生課堂自我評價表
評論
0/150
提交評論