江西省等三省十校新高考數(shù)學(xué)四模試卷及答案解析_第1頁
江西省等三省十校新高考數(shù)學(xué)四模試卷及答案解析_第2頁
江西省等三省十校新高考數(shù)學(xué)四模試卷及答案解析_第3頁
江西省等三省十校新高考數(shù)學(xué)四模試卷及答案解析_第4頁
江西省等三省十校新高考數(shù)學(xué)四模試卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省等三省十校新高考數(shù)學(xué)四模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.32.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.3.等比數(shù)列若則()A.±6 B.6 C.-6 D.4.記個(gè)兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間5.函數(shù)在的圖象大致為()A. B.C. D.6.已知拋物線的焦點(diǎn)為,對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°7.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件8.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)該店2017年每周六的銷售量及當(dāng)天氣溫得到如圖所示的散點(diǎn)圖(軸表示氣溫,軸表示銷售量),由散點(diǎn)圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負(fù)相關(guān),相關(guān)系數(shù)的值為C.負(fù)相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負(fù)數(shù)的值為9.在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.10.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.11.已知是定義在上的奇函數(shù),且當(dāng)時(shí),.若,則的解集是()A. B.C. D.12.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對(duì)稱中心的充要條件是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_____.14.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動(dòng)到地,每次只移動(dòng)一個(gè)單位長(zhǎng)度,則亮亮從移動(dòng)到最近的走法共有____種.15.已知,滿足約束條件,則的最小值為__________.16.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.18.(12分)已知函數(shù)的最小正周期是,且當(dāng)時(shí),取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動(dòng),求面積的最大值.20.(12分)中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”,將四個(gè)面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;(2)求直線與平面所成角的正弦值.21.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.22.(10分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點(diǎn)Q為AE的中點(diǎn).(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對(duì)于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對(duì)于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對(duì)于命題③,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.2、A【解析】

對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)椋詚的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過程要注意.3、B【解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.4、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題5、B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.6、C【解析】

如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、B【解析】

由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.8、C【解析】

根據(jù)正負(fù)相關(guān)的概念判斷.【詳解】由散點(diǎn)圖知隨著的增大而減小,因此是負(fù)相關(guān).相關(guān)系數(shù)為負(fù).故選:C.【點(diǎn)睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負(fù)相關(guān)的區(qū)別.掌握正負(fù)相關(guān)的定義是解題基礎(chǔ).9、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.10、D【解析】

由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.11、B【解析】

利用函數(shù)奇偶性可求得在時(shí)的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時(shí),,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對(duì)稱區(qū)間的解析式;易錯(cuò)點(diǎn)是忽略奇函數(shù)在處有意義時(shí),的情況.12、A【解析】

由題可得出的坐標(biāo)為,再利用點(diǎn)對(duì)稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對(duì)稱性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識(shí)遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.14、【解析】

分三步來考查,先從到,再?gòu)牡剑詈髲牡?,分別計(jì)算出三個(gè)步驟中對(duì)應(yīng)的走法種數(shù),然后利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】分三步來考查:①?gòu)牡?,則亮亮要移動(dòng)兩步,一步是向右移動(dòng)一個(gè)單位,一步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;②從到,則亮亮要移動(dòng)六步,其中三步是向右移動(dòng)一個(gè)單位,三步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;③從到,由①可知有種走法.由分步乘法計(jì)數(shù)原理可知,共有種不同的走法.故答案為:.【點(diǎn)睛】本題考查格點(diǎn)問題的處理,考查分步乘法計(jì)數(shù)原理和組合計(jì)數(shù)原理的應(yīng)用,屬于中等題.15、【解析】

作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】

設(shè)為的中點(diǎn),根據(jù)弦長(zhǎng)公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結(jié)合弦長(zhǎng)公式得到,求出點(diǎn)的軌跡方程,即可求解.【詳解】設(shè)為的中點(diǎn),在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、相交弦長(zhǎng)的最值,解題的關(guān)鍵求出點(diǎn)的軌跡方程,考查計(jì)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點(diǎn)在以為直徑的圓上【解析】

(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識(shí),屬于中檔題.18、(1);(2)見解析.【解析】

(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結(jié)合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計(jì)算出的取值范圍,據(jù)此列表、描點(diǎn)、連線可得出函數(shù)在區(qū)間上的圖象.【詳解】(1)因?yàn)楹瘮?shù)的最小正周期是,所以.又因?yàn)楫?dāng)時(shí),函數(shù)取得最大值,所以,同時(shí),得,因?yàn)?,所以,所以;?)因?yàn)?,所以,列表如下:描點(diǎn)、連線得圖象:【點(diǎn)睛】本題考查正弦函數(shù)解析式的求解,同時(shí)也考查了利用五點(diǎn)作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.19、(1):,:;(2)【解析】

(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點(diǎn)到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點(diǎn)到直線的距離的最大值為,所以面積的最大值為.【點(diǎn)睛】本題考查了參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.20、(1)證明見解析,是,,,,;(2)【解析】

(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進(jìn)而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點(diǎn),,,所在直線為x,y,z軸建立直角坐標(biāo)系,設(shè),由,解得,得到,從而得到,然后求得平面的一個(gè)法向量,代入公式求解.【詳解】(1)因?yàn)槭乔虻闹睆剑瑒t,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個(gè)面的直角分別是,,,.(2)如圖,以A為原點(diǎn),,,所在直線為x,y,z軸建立直角坐標(biāo)系,則,,,,.M為中點(diǎn),從而.所以,設(shè),則.由,得.由得,即.所以.設(shè)平面的一個(gè)法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【點(diǎn)睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.21、(1);(2)見解析.【解析】

(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論