北京市第五十六中學新高考仿真卷數(shù)學試卷及答案解析_第1頁
北京市第五十六中學新高考仿真卷數(shù)學試卷及答案解析_第2頁
北京市第五十六中學新高考仿真卷數(shù)學試卷及答案解析_第3頁
北京市第五十六中學新高考仿真卷數(shù)學試卷及答案解析_第4頁
北京市第五十六中學新高考仿真卷數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市第五十六中學新高考仿真卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.72.設一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發(fā),每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.3.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.4.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.已知函數(shù),若關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.6.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.7.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.8.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據(jù)所給信息,正確的統(tǒng)計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過9.已知向量,,則向量與的夾角為()A. B. C. D.10.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-111.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形12.已知函數(shù),若關于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______14.連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.15.如圖,在棱長為2的正方體中,點、分別是棱,的中點,是側面正方形內(nèi)一點(含邊界),若平面,則線段長度的取值范圍是______.16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點的個數(shù).18.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.19.(12分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.20.(12分)已知實數(shù)x,y,z滿足,證明:.21.(12分)如圖,四棱錐中,側面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.22.(10分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關于的方程的兩根分別為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.2、D【解析】

由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項知識可得選項.【詳解】由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當時,,故選:D.【點睛】本題考查幾何體中的概率問題,關鍵在于運用遞推的知識,得出相鄰的項的關系,這是常用的方法,屬于難度題.3、D【解析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當時,,所以是函數(shù)的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.4、A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質.【名師點睛】三角函數(shù)圖象變換方法:5、B【解析】

利用換元法設,則等價為有且只有一個實數(shù)根,分三種情況進行討論,結合函數(shù)的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數(shù)根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數(shù)有無數(shù)個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數(shù)根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應用.利用換元法,數(shù)形結合是解決本題的關鍵.6、B【解析】

設,,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉化為向量夾角的求解問題.7、B【解析】

設過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.8、D【解析】

先列表分析近10年全球風力發(fā)電新增裝機容量,再結合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.9、C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.10、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.11、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.12、D【解析】

討論,,三種情況,求導得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當時,;當時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數(shù)形結合的思想,屬于中檔題.14、【解析】總事件數(shù)為,目標事件:當?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。15、【解析】

取中點,連結,,推導出平面平面,從而點在線段上運動,作于,由,能求出線段長度的取值范圍.【詳解】取中點,連結,,在棱長為2的正方體中,點、分別是棱、的中點,,,,,平面平面,是側面正方形內(nèi)一點(含邊界),平面,點在線段上運動,在等腰△中,,,作于,由等面積法解得:,,線段長度的取值范圍是,.故答案為:,.【點睛】本題考查線段長的取值范圍的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.16、【解析】

利用等差數(shù)列的通項公式以及等比中項的性質,化簡求出公差與的關系,然后轉化求解的值.【詳解】設等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)求導后分析導函數(shù)的正負再判斷單調(diào)性即可.(2),有零點等價于方程實數(shù)根,再換元將原方程轉化為,再求導分析的圖像數(shù)形結合求解即可.【詳解】(1)的定義域為,,當時,,所以在單調(diào)遞減;當時,,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點等價于方程實數(shù)根,令則原方程轉化為,令,.令,,∴,,,,,當時,,當時,.如圖可知①當時,有唯一零點,即有唯一零點;②當時,有兩個零點,即有兩個零點;③當時,有唯一零點,即有唯一零點;④時,此時無零點,即此時無零點.【點睛】本題主要考查了利用導數(shù)分析函數(shù)的單調(diào)性的方法,同時也考查了利用導數(shù)分析函數(shù)零點的問題,屬于中檔題.18、(1);(2);(3)【解析】

(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設,則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,所以,由,則,.由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設,則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質、圓的軌跡方程、直線與橢圓的位置關系中定值問題,考查了學生的計算能力,屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質,當軸時,最??;(2)設點,,分別代入拋物線方程和得到三個方程,消去,得到關于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標準方程,,根據(jù)拋物線的性質,當軸時,最小,最小值為,即為4.(2)由題意,設點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【點睛】本題主要考查拋物線的方程和性質和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復雜式子的變形能力不足,導致錯解.20、見解析【解析】

已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎題.21、(1)見解析(2)【解析】

(1)根據(jù)平面,利用線面垂直的定義可得,再由,根據(jù)線面垂直的判定定理即可證出.(2)取的中點,連接,以為坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論