遼寧省大石橋市周家鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
遼寧省大石橋市周家鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
遼寧省大石橋市周家鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
遼寧省大石橋市周家鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
遼寧省大石橋市周家鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

遼寧省大石橋市周家鎮(zhèn)中學(xué)2024年中考數(shù)學(xué)模擬預(yù)測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.182.如圖,DE是線段AB的中垂線,,,,則點A到BC的距離是A.4 B. C.5 D.63.cos30°的相反數(shù)是()A. B. C. D.4.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.5.關(guān)于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±16.一個多邊形的每個內(nèi)角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形7.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結(jié)束.設(shè)運動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數(shù)關(guān)系的是A.① B.④ C.②或④ D.①或③8.已知A(x1,y1),B(x2,y2)是反比例函數(shù)y=kx(k≠0)圖象上的兩個點,當(dāng)x1<x2<0時,y1>y2A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限9.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應(yīng)的函數(shù)表達(dá)式是()A. B.C. D.10.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或211.已知一元二次方程有一個根為2,則另一根為A.2 B.3 C.4 D.812.下列手機手勢解鎖圖案中,是軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一組數(shù)據(jù):1,2,a,4,5的平均數(shù)為3,則a=_____.14.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為______個.15.若一條直線經(jīng)過點(1,1),則這條直線的解析式可以是(寫出一個即可)______.16.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,則另一組新數(shù)據(jù)x1+1,x2+2,x3+3,x4+4,x5+5的平均數(shù)是_____.17.某學(xué)校組織學(xué)生到首鋼西十冬奧廣場開展綜合實踐活動,數(shù)學(xué)小組的同學(xué)們在距奧組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)18.自2008年9月南水北調(diào)中線京石段應(yīng)急供水工程通水以來,截至2018年5月8日5時52分,北京市累計接收河北四庫來水和丹江口水庫來水達(dá)50億立方米.已知丹江口水庫來水量比河北四庫來水量的2倍多1.82億立方米,求河北四庫來水量.設(shè)河北四庫來水量為x億立方米,依題意,可列一元一次方程為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某小學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學(xué)生進行調(diào)查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學(xué)有2000名學(xué)生,請估計其中有多少名學(xué)生能在1.5小時內(nèi)完成家庭作業(yè)?20.(6分)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.(1)求證:∠DCA=∠EBC;(2)延長BE交AD于F,求證:AB2=AF·AD.21.(6分)為了解中學(xué)生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:(1)本次接受隨機抽樣調(diào)查的中學(xué)生人數(shù)為_______,圖①中m的值是_____;(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).22.(8分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當(dāng)BP與CP之和最小時,P點坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標(biāo);若不存在,說明理由.23.(8分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點,交延長線于點(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.24.(10分)先化簡再求值:÷(﹣1),其中x=.25.(10分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關(guān)于直線PC的對稱點E,設(shè)點P的運動時間為t(s).(1)若m=5,求當(dāng)P,E,B三點在同一直線上時對應(yīng)的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.26.(12分)4×100米拉力賽是學(xué)校運動會最精彩的項目之一.圖中的實線和虛線分別是初三?一班和初三?二班代表隊在比賽時運動員所跑的路程y(米)與所用時間x(秒)的函數(shù)圖象(假設(shè)每名運動員跑步速度不變,交接棒時間忽略不計).問題:(1)初三?二班跑得最快的是第接力棒的運動員;(2)發(fā)令后經(jīng)過多長時間兩班運動員第一次并列?27.(12分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數(shù)中選擇一個合適的數(shù)代入求值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.2、A【解析】

作于利用直角三角形30度角的性質(zhì)即可解決問題.【詳解】解:作于H.

垂直平分線段AB,

,

,

,

,,

故選A.【點睛】本題考查線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.3、C【解析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.4、A【解析】

根據(jù)圖形,結(jié)合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列出方程組.5、C【解析】

根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是熟練運用一元二次方程的定義,本題屬于基礎(chǔ)題型.6、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.7、D【解析】

分兩種情形討論當(dāng)點P順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點P逆時針旋轉(zhuǎn)時,圖象是①,由此即可解決問題.【詳解】解:當(dāng)點P順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點P逆時針旋轉(zhuǎn)時,圖象是①.故選D.8、B【解析】試題分析:當(dāng)x1<x2<0時,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函數(shù)y=kx﹣k的圖象經(jīng)過第一、三、四象限,所以不經(jīng)過第二象限,故答案選B.考點:反比例函數(shù)圖象上點的坐標(biāo)特征;一次函數(shù)圖象與系數(shù)的關(guān)系.9、B【解析】

拋物線平移不改變a的值,由拋物線的頂點坐標(biāo)即可得出結(jié)果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),

可設(shè)新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關(guān)鍵是得到新拋物線的頂點坐標(biāo).10、C【解析】

過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.11、C【解析】試題分析:利用根與系數(shù)的關(guān)系來求方程的另一根.設(shè)方程的另一根為α,則α+2=6,解得α=1.考點:根與系數(shù)的關(guān)系.12、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,所以A錯誤;B.既不是軸對稱圖形,也不是中心對稱圖形,所以B錯誤;C.是中心對稱圖形,不是軸對稱圖形,所以C錯誤;D.是軸對稱圖形,不是中心對稱圖形,所以D正確.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握定義是本題解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】依題意有:(1+2+a+4+5)÷5=1,解得a=1.故答案為1.14、9n+1.【解析】

∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數(shù)之和=9n+1.故答案為9n+1.15、y=x.(答案不唯一)【解析】

首先設(shè)一次函數(shù)解析式為:y=kx+b(k≠0),b取任意值后,把(1,1)代入所設(shè)的解析式里,即可得到k的值,進而得到答案.【詳解】解:設(shè)直線的解析式y(tǒng)=kx+b,令b=0,將(1,1)代入,得k=1,此時解析式為:y=x.由于b可為任意值,故答案不唯一.故答案為:y=x.(答案不唯一)【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式.16、1【解析】

根據(jù)平均數(shù)的性質(zhì)知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均數(shù),只要把數(shù)x1、x2、x3、x4、x5的和表示出即可.【詳解】∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,∴x1+x2+x3+x4+x5=15,則新數(shù)據(jù)的平均數(shù)為=1,故答案為:1.【點睛】本題考查的是樣本平均數(shù)的求法.解決本題的關(guān)鍵是用一組數(shù)據(jù)的平均數(shù)表示另一組數(shù)據(jù)的平均數(shù).17、40.0【解析】

首先過點A作AE∥BD,交CD于點E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數(shù)的定義,而求得CE的長,繼而求得筒倉CD的高.【詳解】過點A作AE∥BD,交CD于點E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【點睛】此題考查解直角三角形的應(yīng)用?仰角的定義,注意能借助仰角構(gòu)造直角三角形并解直角三角形是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.18、【解析】【分析】河北四庫來水量為x億立方米,根據(jù)等量關(guān)系:河北四庫來水和丹江口水庫來水達(dá)50億立方米,列方程即可得.【詳解】河北四庫來水量為x億立方米,則丹江口水庫來水量為(2x+1.82)億立方米,由題意得:x+(2x+1.82)=50,故答案為x+(2x+1.82)=50.【點睛】本題考查了一元一次方程的應(yīng)用,弄清題意,找出等量關(guān)系列出方程是關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)補圖見解析;(2)27°;(3)1800名【解析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對應(yīng)的比例即可求解;

(3)用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.【詳解】(1)抽取的總?cè)藬?shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時內(nèi)完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點:條形統(tǒng)計圖、扇形統(tǒng)計圖.20、(1)見解析;(2)見解析.【解析】

(1)由AD∥BC得∠DAC=∠BCA,又∵AC·CE=AD·BC∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)由題中條件易證得△ABF∽△DAC∴,又∵AB=DC,∴【詳解】證明:(1)∵AD∥BC,∴∠DAC=∠BCA,∵AC·CE=AD·BC,∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC,∴∠BAD=∠ADC,∴△ABF∽△DAC,∴,∵AB=DC,∴.【點睛】本題重點考查了平行線的性質(zhì)和三角形相似的判定,靈活運用所學(xué)知識是解題的關(guān)鍵.21、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】

(1)根據(jù)題意,本次接受調(diào)查的學(xué)生總?cè)藬?shù)為各個金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數(shù)”的概率乘以全???cè)藬?shù)求解即可.【詳解】(1)本次接受隨機抽樣調(diào)查的中學(xué)生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數(shù)約為250000×=160000人.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表.22、(1)y=x2+2x﹣3;(2)點P坐標(biāo)為(﹣1,﹣2);(3)點M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對稱軸,從而得出點C關(guān)于對稱軸的對稱點C′坐標(biāo),連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點D的坐標(biāo),由點O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時,以M、O、D為頂點的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,∴平移后拋物線的二次項系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點C(0,﹣3),則點C關(guān)于直線x=﹣1的對稱點C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點即為所求點P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點M只能在點D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時,以M、O、D為頂點的三角形△BOD相似,①若,則,解得DM=2,此時點M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時點M坐標(biāo)為(﹣1,2);綜上,點M坐標(biāo)為(﹣1,3)或(﹣1,2).【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.23、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據(jù)平行四邊形的性質(zhì)得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據(jù)此可得出結(jié)論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質(zhì).24、【解析】分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.詳解:原式====當(dāng)時,原式==.點睛:本題考查了分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.25、(1)1;(1)≤m<.【解析】

(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當(dāng)點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當(dāng)點P與A重合時,點E在BC的上方,點E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設(shè)PD=t.則PA=5-t.

∵P、B、E共線,

∴∠BPC=∠DPC,

∵AD∥BC,

∴∠DPC=∠PCB,

∴∠BPC=∠PCB,

∴BP=BC=5,

在Rt△ABP中,∵AB1+AP1=PB1,

∴31+(5-t)1=51,

∴t=1或9(舍棄),∴t=1時,B、E、P共線.(1)如圖1中,當(dāng)點P與A重

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論