版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
黑龍江省齊齊哈爾市克東縣2023-2024學(xué)年中考考前最后一卷數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖所示的四邊形,與選項(xiàng)中的一個(gè)四邊形相似,這個(gè)四邊形是()A. B. C. D.2.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個(gè)數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同3.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號(hào)是()A.③④ B.②③ C.①④ D.①②③4.今年,我省啟動(dòng)了“關(guān)愛留守兒童工程”.某村小為了了解各年級(jí)留守兒童的數(shù)量,對(duì)一到六年級(jí)留守兒童數(shù)量進(jìn)行了統(tǒng)計(jì),得到每個(gè)年級(jí)的留守兒童人數(shù)分別為10,15,10,17,18,1.對(duì)于這組數(shù)據(jù),下列說法錯(cuò)誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是5.下列方程中有實(shí)數(shù)解的是()A.x4+16=0 B.x2﹣x+1=0C. D.6.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點(diǎn)分別落在直線m、n上,∠1=20°,添加下列哪一個(gè)條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°7.下列運(yùn)算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a68.反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣1;②在每個(gè)象限內(nèi),y隨x的增大而增大;③若點(diǎn)A(﹣1,h),B(2,k)在圖象上,則h<k;④若點(diǎn)P(x,y)在上,則點(diǎn)P′(﹣x,﹣y)也在圖象.其中正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.49.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.2310.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,小明想用圖中所示的扇形紙片圍成一個(gè)圓錐,已知扇形的半徑為5cm,弧長是cm,那么圍成的圓錐的高度是cm.12.小球在如圖所示的地板上自由地滾動(dòng),并隨機(jī)地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.13.舉重比賽的總成績是選手的挺舉與抓舉兩項(xiàng)成績之和,若其中一項(xiàng)三次挑戰(zhàn)失敗,則該項(xiàng)成績?yōu)?,甲、乙是同一重量級(jí)別的舉重選手,他們近三年六次重要比賽的成績?nèi)缦拢▎挝唬汗铮喝绻闶墙叹?,要選派一名選手參加國際比賽,那么你會(huì)選擇_____(填“甲”或“乙”),理由是___________.14.如圖,直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,點(diǎn)C在x軸的正半軸上,若∠ACB=90°,則點(diǎn)C的坐標(biāo)為______.15.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.16.如果一個(gè)矩形的面積是40,兩條對(duì)角線夾角的正切值是,那么它的一條對(duì)角線長是__________.17.若一個(gè)多邊形的內(nèi)角和為1080°,則這個(gè)多邊形的邊數(shù)為__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在?ABCD中,過點(diǎn)A作AE⊥BC于點(diǎn)E,AF⊥DC于點(diǎn)F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.19.(5分)為提高市民的環(huán)保意識(shí),倡導(dǎo)“節(jié)能減排,綠色出行”,某市計(jì)劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價(jià)400元,B型車單價(jià)320元.今年年初,“共享單車”試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng).投放A,B兩種款型的單車共100輛,總價(jià)值36800元.試問本次試點(diǎn)投放的A型車與B型車各多少輛?試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開.按照試點(diǎn)投放中A,B兩車型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬元.請(qǐng)問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?20.(8分)已知關(guān)于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個(gè)實(shí)數(shù)根x1,x1.求實(shí)數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實(shí)數(shù)k的值.21.(10分)某品牌手機(jī)去年每臺(tái)的售價(jià)y(元)與月份x之間滿足函數(shù)關(guān)系:y=﹣50x+2600,去年的月銷量p(萬臺(tái))與月份x之間成一次函數(shù)關(guān)系,其中1﹣6月份的銷售情況如下表:月份(x)1月2月3月4月5月6月銷售量(p)3.9萬臺(tái)4.0萬臺(tái)4.1萬臺(tái)4.2萬臺(tái)4.3萬臺(tái)4.4萬臺(tái)(1)求p關(guān)于x的函數(shù)關(guān)系式;(2)求該品牌手機(jī)在去年哪個(gè)月的銷售金額最大?最大是多少萬元?(3)今年1月份該品牌手機(jī)的售價(jià)比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對(duì)該手機(jī)以1月份價(jià)格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺(tái).若今年2月份這種品牌手機(jī)的銷售額為6400萬元,求m的值.22.(10分)為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開展“書法、武術(shù)、黃梅戲進(jìn)校園”活動(dòng).今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績?cè)u(píng)定為A,B,C,D,E五個(gè)等級(jí),該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);(2)求扇形統(tǒng)計(jì)圖B等級(jí)所對(duì)應(yīng)扇形的圓心角度數(shù);(3)已知A等級(jí)的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請(qǐng)你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.23.(12分)如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點(diǎn)坐標(biāo)為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.24.(14分)某校在一次大課間活動(dòng)中,采用了四種活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問題:(1)本次調(diào)查學(xué)生共人,a=,并將條形圖補(bǔ)充完整;(2)如果該校有學(xué)生2000人,請(qǐng)你估計(jì)該校選擇“跑步”這種活動(dòng)的學(xué)生約有多少人?(3)學(xué)校讓每班在A、B、C、D四種活動(dòng)形式中,隨機(jī)抽取兩種開展活動(dòng),請(qǐng)用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)勾股定理求出四邊形第四條邊的長度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項(xiàng)中,四條邊之比為1:3:5:5,且對(duì)應(yīng)角相等,故選D.【點(diǎn)睛】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對(duì)應(yīng)邊的比相等是解題的關(guān)鍵.2、B【解析】試題分析:根據(jù)分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點(diǎn):由三視圖判斷幾何體;簡單組合體的三視圖.3、C【解析】試題分析:由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.解:①當(dāng)x=1時(shí),y=a+b+c=1,故本選項(xiàng)錯(cuò)誤;②當(dāng)x=﹣1時(shí),圖象與x軸交點(diǎn)負(fù)半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項(xiàng)正確;③由拋物線的開口向下知a<1,∵對(duì)稱軸為1>x=﹣>1,∴2a+b<1,故本選項(xiàng)正確;④對(duì)稱軸為x=﹣>1,∴a、b異號(hào),即b>1,∴abc<1,故本選項(xiàng)錯(cuò)誤;∴正確結(jié)論的序號(hào)為②③.故選B.點(diǎn)評(píng):二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對(duì)稱軸和a的符號(hào)確定:由對(duì)稱軸公式x=﹣b2a判斷符號(hào);(3)c由拋物線與y軸的交點(diǎn)確定:交點(diǎn)在y軸正半軸,則c>1;否則c<1;(4)當(dāng)x=1時(shí),可以確定y=a+b+C的值;當(dāng)x=﹣1時(shí),可以確定y=a﹣b+c的值.4、C【解析】
解:中位數(shù)應(yīng)該是15和17的平均數(shù)16,故C選項(xiàng)錯(cuò)誤,其他選擇正確.故選C.【點(diǎn)睛】本題考查求中位數(shù),眾數(shù),方差,理解相關(guān)概念是本題的解題關(guān)鍵.5、C【解析】
A、B是一元二次方程可以根據(jù)其判別式判斷其根的情況;C是無理方程,容易看出沒有實(shí)數(shù)根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實(shí)數(shù)根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實(shí)數(shù)根;C.x=﹣1是方程的根;D.當(dāng)x=1時(shí),分母x2-1=0,無實(shí)數(shù)根.故選:C.【點(diǎn)睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數(shù)的值叫做方程的解.解答本題的關(guān)鍵是針對(duì)不同的方程進(jìn)行分類討論.6、D【解析】
根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【詳解】∵直線EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.7、D【解析】
根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進(jìn)行計(jì)算即可.【詳解】A、(a2)5=a10,故原題計(jì)算錯(cuò)誤;B、(x﹣1)2=x2﹣2x+1,故原題計(jì)算錯(cuò)誤;C、3a2b和3ab2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;D、a2?a4=a6,故原題計(jì)算正確;故選:D.【點(diǎn)睛】此題主要考查了冪的乘方、完全平方公式、合并同類項(xiàng)和同底數(shù)冪的乘法,關(guān)鍵是掌握各計(jì)算法則.8、B【解析】
根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號(hào),利用反比例函數(shù)的性質(zhì)進(jìn)行判斷即可.【詳解】解:∵反比例函數(shù)的圖象位于一三象限,∴m>0故①錯(cuò)誤;當(dāng)反比例函數(shù)的圖象位于一三象限時(shí),在每一象限內(nèi),y隨x的增大而減小,故②錯(cuò)誤;將A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正確;將P(x,y)代入y=得到m=xy,將P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上故④正確,故選:B.【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號(hào)與其圖象的關(guān)系是解決本題的關(guān)鍵.9、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點(diǎn):1正多邊形和圓;2.弧長的計(jì)算.10、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點(diǎn):分式有意義的條件.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
已知弧長即已知圍成的圓錐的底面半徑的長是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長是5cm.就可以根據(jù)勾股定理求出圓錐的高.【詳解】設(shè)底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.12、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41813、乙乙的比賽成績比較穩(wěn)定.【解析】
觀察表格中的數(shù)據(jù)可知:甲的比賽成績波動(dòng)幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動(dòng)幅度較小,故乙的比賽成績比較穩(wěn)定,據(jù)此可得結(jié)論.【詳解】觀察表格中的數(shù)據(jù)可得,甲的比賽成績波動(dòng)幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動(dòng)幅度較小,故乙的比賽成績比較穩(wěn)定;所以要選派一名選手參加國際比賽,應(yīng)該選擇乙,理由是乙的比賽成績比較穩(wěn)定.故答案為乙,乙的比賽成績比較穩(wěn)定.【點(diǎn)睛】本題主要考查了方差,方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.14、(2,0)【解析】
根據(jù)直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,可得AB=2AO=4,再根據(jù)Rt△ABC中,OC=AB=2,即可得到點(diǎn)C的坐標(biāo)【詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點(diǎn)C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點(diǎn)問題,解決問題的關(guān)鍵是利用直角三角形斜邊上中線的性質(zhì)得到OC的長.15、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因?yàn)椤螧CD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.16、1.【解析】
如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.17、1【解析】
根據(jù)多邊形內(nèi)角和定理:(n﹣2)?110(n≥3)可得方程110(x﹣2)=1010,再解方程即可.【詳解】解:設(shè)多邊形邊數(shù)有x條,由題意得:110(x﹣2)=1010,解得:x=1,故答案為:1.【點(diǎn)睛】此題主要考查了多邊形內(nèi)角和定理,關(guān)鍵是熟練掌握計(jì)算公式:(n﹣2)?110(n≥3).三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2【解析】
(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問題;(2)在Rt△ACF,根據(jù)AF=CF·tan∠ACF計(jì)算即可.【詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【點(diǎn)睛】本題主要考查三角形的性質(zhì)及三角函數(shù)的相關(guān)知識(shí),充分利用已知條件靈活運(yùn)用各種方法求解可得到答案。19、(1)本次試點(diǎn)投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設(shè)本次試點(diǎn)投放的A型車x輛、B型車y輛,根據(jù)“兩種款型的單車共100輛,總價(jià)值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數(shù)量比為3:2,據(jù)此設(shè)整個(gè)城區(qū)全面鋪開時(shí)投放的A型車3a輛、B型車2a輛,根據(jù)“投資總價(jià)值不低于184萬元”列出關(guān)于a的不等式,解之求得a的范圍,進(jìn)一步求解可得.詳解:(1)設(shè)本次試點(diǎn)投放的A型車x輛、B型車y輛,根據(jù)題意,得:,解得:,答:本次試點(diǎn)投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數(shù)量比為3:2,設(shè)整個(gè)城區(qū)全面鋪開時(shí)投放的A型車3a輛、B型車2a輛,根據(jù)題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個(gè)城區(qū)全面鋪開時(shí)投放的A型車至少3000輛、B型車至少2000輛,則城區(qū)10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點(diǎn)睛:本題主要考查二元一次方程組和一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊(yùn)含的相等(或不等)關(guān)系,并據(jù)此列出方程組.20、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實(shí)數(shù)k的取值范圍;(2)由根與系數(shù)的關(guān)系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個(gè)實(shí)數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實(shí)數(shù)k的取值范圍為k≤.(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個(gè)實(shí)數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實(shí)數(shù)k的值為﹣2.考點(diǎn):一元二次方程根與系數(shù)的關(guān)系,根的判別式.21、(1)p=0.1x+3.8;(2)該品牌手機(jī)在去年七月份的銷售金額最大,最大為10125萬元;(3)m的值為1.【解析】
(1)直接利用待定系數(shù)法求一次函數(shù)解析式即可;(2)利用銷量×售價(jià)=銷售金額,進(jìn)而利用二次函數(shù)最值求法求出即可;(3)分別表示出1,2月份的銷量以及售價(jià),進(jìn)而利用今年2月份這種品牌手機(jī)的銷售額為6400萬元,得出等式求出即可.【詳解】(1)設(shè)p=kx+b,把p=3.9,x=1;p=4.0,x=2分別代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)設(shè)該品牌手機(jī)在去年第x個(gè)月的銷售金額為w萬元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,當(dāng)x=7時(shí),w最大=10125,答:該品牌手機(jī)在去年七月份的銷售金額最大,最大為10125萬元;(3)當(dāng)x=12時(shí),y=100,p=5,1月份的售價(jià)為:100(1﹣m%)元,則2月份的售價(jià)為:0.8×100(1﹣m%)元;1月份的銷量為:5×(1﹣1.5m%)萬臺(tái),則2月份的銷量為:[5×(1﹣1.5m%)+1.5]萬臺(tái);∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值為1.【點(diǎn)睛】此題主要考查了二次函數(shù)的應(yīng)用以及待定系數(shù)法求一次函數(shù)解析式,根據(jù)題意表示出2月份的銷量與售價(jià)是解題關(guān)鍵.22、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學(xué)生人數(shù);(2)由(1)求出的學(xué)生人數(shù),即可求出B等級(jí)所對(duì)應(yīng)扇形的圓心角度數(shù);(3)首先根據(jù)題意列表或畫出樹狀圖,然后由求得所有等可能的結(jié)果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學(xué)生有:4÷8%=50(人)(2)B等級(jí)的學(xué)生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級(jí)所對(duì)應(yīng)扇形的圓心角度數(shù)為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結(jié)果,選中1名男生和1名女生結(jié)果的有6種.∴P(選中1名男生和1名女生)=6“點(diǎn)睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.通過扇形統(tǒng)計(jì)圖求出扇形的圓心角度數(shù),應(yīng)用數(shù)形結(jié)合的思想是解決此類題目的關(guān)鍵.23、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點(diǎn)式,此題得解;(2)過點(diǎn)C作直線AB的垂線,交線段AB的延長線于點(diǎn)D,由AB∥x軸且AB=1,可得出點(diǎn)B的坐標(biāo)為(m+2,1a+2m?2),設(shè)BD=t,則點(diǎn)C的坐標(biāo)為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m?2,即m<2時(shí),x=2m?2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m?2≤m≤2m?2,即2≤m≤2時(shí),x=m時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024幼兒教育機(jī)構(gòu)教師勞動(dòng)合同范本3篇
- 2024年防火門質(zhì)量保障體系合同
- 2024年高端汽車零部件技術(shù)保密與全球銷售代理合同3篇
- 2024私人住宅施工項(xiàng)目協(xié)議范本版B版
- 營銷策劃方案模板合集五篇(可編輯)
- 2025年度金融科技解決方案合同3篇
- 月考分析發(fā)言稿(15篇)
- 2025年度廠區(qū)食堂承包合同:綠色環(huán)保食材采購協(xié)議3篇
- 2024年鋁制品供貨條款
- 鄭州信息工程職業(yè)學(xué)院《燃燒理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 排水管道疏通、清淤、檢測、修復(fù)方案
- 安徽省合肥中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷含解析
- 2024年白山客運(yùn)資格證題庫及答案
- 糖尿病藥物治療分類
- 2024年時(shí)政熱點(diǎn)知識(shí)競賽試卷及答案(共四套)
- 除顫儀使用護(hù)理查房
- 高速公路機(jī)電系統(tǒng)培訓(xùn)
- 220kV耐張線夾檢測報(bào)告
- 2024年T電梯修理考試題庫附答案
- 山東虛擬電廠商業(yè)模式介紹
- 2024年郵政系統(tǒng)招聘考試-郵政營業(yè)員考試近5年真題集錦(頻考類試題)帶答案
評(píng)論
0/150
提交評(píng)論