![2025屆湖北省襄陽市數(shù)學高一下期末聯(lián)考試題含解析_第1頁](http://file4.renrendoc.com/view5/M01/0C/20/wKhkGGZvIV6AJ6OjAAHwn72EWvo373.jpg)
![2025屆湖北省襄陽市數(shù)學高一下期末聯(lián)考試題含解析_第2頁](http://file4.renrendoc.com/view5/M01/0C/20/wKhkGGZvIV6AJ6OjAAHwn72EWvo3732.jpg)
![2025屆湖北省襄陽市數(shù)學高一下期末聯(lián)考試題含解析_第3頁](http://file4.renrendoc.com/view5/M01/0C/20/wKhkGGZvIV6AJ6OjAAHwn72EWvo3733.jpg)
![2025屆湖北省襄陽市數(shù)學高一下期末聯(lián)考試題含解析_第4頁](http://file4.renrendoc.com/view5/M01/0C/20/wKhkGGZvIV6AJ6OjAAHwn72EWvo3734.jpg)
![2025屆湖北省襄陽市數(shù)學高一下期末聯(lián)考試題含解析_第5頁](http://file4.renrendoc.com/view5/M01/0C/20/wKhkGGZvIV6AJ6OjAAHwn72EWvo3735.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省襄陽市數(shù)學高一下期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的內(nèi)角的對邊分別為,若的面積為,則()A. B. C. D.2.已知是定義在上的奇函數(shù),當時,,那么不等式的解集是()A. B.C. D.3.已知,且,把底數(shù)相同的指數(shù)函數(shù)與對數(shù)函數(shù)圖象的公共點稱為(或)的“亮點”.當時,在下列四點,,,中,能成為的“亮點”有()A.0個 B.1個 C.2個 D.3個4.運行如圖程序,若輸入的是,則輸出的結果是()A.3 B.9 C.0 D.5.圓的半徑為()A.1 B.2 C.3 D.46.如圖,正方形的邊長為2cm,它是水平放置的一個平面圖形的直觀圖,則原平面圖形的周長是()cm.A.12 B.16 C. D.7.一個圓柱的母線長為5,底面半徑為2,則圓柱的軸截面的面積是()A.10 B.20 C.30 D.408.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.9.過點作圓的切線,且直線與平行,則與間的距離是()A. B. C. D.10.不等式的解集是A.或 B.或C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若向量與的夾角為,與的夾角為,則______.12.已知,且,則________.13.對于數(shù)列,若存在,使得,則刪去,依此操作,直到所得到的數(shù)列沒有相同項,將最后得到的數(shù)列稱為原數(shù)列的“基數(shù)列”.若,則數(shù)列的“基數(shù)列”的項數(shù)為__________________.14.終邊經(jīng)過點,則_____________15.已知向量,,若向量與垂直,則__________.16.經(jīng)過點且在x軸上的截距等于在y軸上的截距的直線方程是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知的頂點,邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點的坐標;(2)求直線的方程.18.已知函數(shù)(1)若,求函數(shù)的零點;(2)若在恒成立,求的取值范圍;(3)設函數(shù),解不等式.19.已知,是函數(shù)的兩個相鄰的零點.(1)求;(2)若對任意,都有,求實數(shù)的取值范圍.(3)若關于的方程在上有兩個不同的解,求實數(shù)的取值范圍.20.如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)(1)若等邊邊長為,,試寫出關于的函數(shù)關系;(2)問為多少時,四邊形的面積最大?這個最大面積為多少?21.2015年我國將加快階梯水價推行,原則是“保基本、建機制、促節(jié)約”,其中“?;尽笔侵副WC至少80%的居民用戶用水價格不變.為響應國家政策,制定合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):(1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;(2)設該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價格保持不變.試根據(jù)樣本估計總體的思想,分析此方案是否符合國家“?;尽闭撸?/p>
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意可得,化簡后利用正弦定理將“邊化為角“即可.【詳解】解:的面積為,,,故選:C.【點睛】本題主要考查正弦定理的應用和三角形的面積公式,屬于基礎題.2、B【解析】
根據(jù)奇函數(shù)的性質求出的解析式,然后分類討論求出不等式的解集.【詳解】因為是定義在上的奇函數(shù),所以有,顯然是不等式的解集;當時,;當時,,綜上所述:不等式的解集是,故本題選B.【點睛】本題考查了利用奇函數(shù)性質求解不等式解集問題,考查了分類思想,正確求出函數(shù)的解析式是解題的關鍵.3、C【解析】
利用“亮點”的定義對每一個點逐一分析得解.【詳解】由題得,,由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”.故選C【點睛】本題主要考查指數(shù)和對數(shù)的運算,考查指數(shù)和對數(shù)函數(shù)的圖像和性質,意在考查學生對這些知識的理解掌握水平,屬于基礎題.4、B【解析】分析:首先根據(jù)框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結果為9,故選B.點睛:該題考查的是有關程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應的函數(shù)解析式應該代入哪個,從而求得最后的結果,屬于簡單題目.5、A【解析】
將圓的一般方程化為標準方程,確定所求.【詳解】因為圓,所以,所以,故選A.【點睛】本題考查圓的標準方程與一般方程互化,圓的標準方程通過展開化為一般方程,圓的一般方程通過配方化為標準方程,屬于簡單題.6、B【解析】
根據(jù)直觀圖與原圖形的關系,可知原圖形為平行四邊形,結合線段關系即可求解.【詳解】根據(jù)直觀圖,可知原圖形為平行四邊形,因為正方形的邊長為2cm,所以原圖形cm,,則,所以原平面圖形的周長為,故選:B.【點睛】本題考查了平面圖形直觀圖與原圖形的關系,由直觀圖求原圖形面積方法,屬于基礎題.7、B【解析】分析:要求圓柱的軸截面的面積,需先知道圓柱的軸截面是什么圖形,圓柱的軸截面是矩形,由題意知該矩形的長、寬分別為,根據(jù)矩形面積公式可得結果.詳解:因為圓柱的軸截面是矩形,由題意知該矩形的長是母線長,寬為底面圓的直徑,所以軸截面的面積為,故選B.點睛:本題主要考查圓柱的性質以及圓柱軸截面的面積,屬于簡單題.8、A【解析】
利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應用,考查學生分析解決問題的能力,屬于中檔題.9、D【解析】由題意知點在圓C上,圓心坐標為,所以,故切線的斜率為,所以切線方程為,即.因為直線l與直線平行,所以,解得,所以直線的方程是-4x+3y-8=0,即4x-3y+8=0.所以直線與直線l間的距離為.選D.10、C【解析】
把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應的一元二次方程能夠因式分解,即能夠轉化為幾個代數(shù)式的乘積形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)向量平行四邊形法則作出圖形,然后在三角形中利用正弦定理分析.【詳解】如圖所示,,,所以在中有:,則,故.【點睛】本題考查向量的平行四邊形法則的運用,難度一般.在運用平行四邊形法則時候,可以適當將其拆分為三角形,利用解三角形中的一些方法去解決問題.12、或【解析】
利用正切函數(shù)的單調(diào)性及周期性,可知在區(qū)間與區(qū)間內(nèi)各有一值,從而求出?!驹斀狻恳驗楹瘮?shù)的周期為,而且在內(nèi)單調(diào)增,所以有兩個解,一個在,一個在,由反正切函數(shù)的定義有,或?!军c睛】本題主要考查正切函數(shù)的性質及反正切函數(shù)的定義的應用。13、10【解析】
由題意可得,只需計算所有可能取值的個數(shù)即可.【詳解】因為求的可能取值個數(shù),由周期性,故只需考慮的情況即可.此時.一共19個取值,故只需分析,又由,故,,即不同的取值個數(shù)一共為個.即“基數(shù)列”分別為和共10項.故答案為10【點睛】本題主要考查余弦函數(shù)的周期性.注意到隨著的增大的值周期變化,故只需考慮一個周期內(nèi)的情況.14、【解析】
根據(jù)正弦值的定義,求得正弦值.【詳解】依題意.故答案為:【點睛】本小題主要考查根據(jù)角的終邊上一點的坐標求正弦值,屬于基礎題.15、【解析】,所以,解得.16、或【解析】
當直線不過原點時,設直線的方程為,把點代入求得的值,即可求得直線方程,當直線過原點時,直線的方程為,綜合可得答案.【詳解】當直線不過原點時,設直線的方程為,把點代入可得:,即此時直線的方程為:當直線過原點時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【點睛】過原點的直線橫縱截距都為0,在解題的時候容易漏掉.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點斜式可得的方程,與所在直線方程聯(lián)立即可得結果;(2)設則,代入中,可求得點坐標,利用兩點式可得結果.【詳解】(1)由邊上的高所在直線方程為得,所以直線AB所在的直線方程為,即聯(lián)立解得所以頂點的坐標為(4,3)(2)因為在直線上,所以設則,代入中,得所以則直線的方程為,即【點睛】本題主要考查直線的方程,直線方程主要有五種形式,每種形式的直線方程都有其局限性,斜截式與點斜式要求直線斜率存在,所以用這兩種形式設直線方程時要注意討論斜是否存在;截距式要注意討論截距是否為零;兩點式要注意討論直線是否與坐標軸平行;求直線方程的最終結果往往需要化為一般式.18、(1)1;(2)(3)見解析【解析】
(1)解方程可得零點;(2)恒成立,可分離參數(shù)得,這樣只要求得在上的最大值即可;(3)注意到的定義域,不等式等價于,這樣可根據(jù)與0,1的大小關系分類討論.【詳解】(1)當時,令得,,∵,∴函數(shù)的零點是1(2)在恒成立,即在恒成立,分離參數(shù)得:,∵,∴從而有:.(3)令,得,,因為函數(shù)的定義域為,所以等價于(1)當,即時,恒成立,原不等式的解集是(2)當,即時,原不等式的解集是(3)當,即時,原不等式的解集是(4)當,即時,原不等式的解集是綜上所述:當時,原不等式的解集是當時,原不等式的解集是當時,原不等式的解集是當時,原不等式的解集是【點睛】本題考查函數(shù)的零點,考查不等式恒成立問題,考查解含參數(shù)的一元二次不等式.其中不等式恒成立問題可采用參數(shù)法轉化為求函數(shù)的最值問題,而解一元二次不等式,必須對參數(shù)分類討論,解題關鍵是確定分類標準.解一元二次不等式的分類標準有三個方面:一是二次的系數(shù)正負或者為0問題,二是一元二次方程的判別式的正負或0的問題,三是一元二次方程兩根的大小關系.19、(1);(2);(3)【解析】
(1)先化簡,再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問題轉化為,根據(jù)三角函數(shù)的性質求出的最大值,即可求出實數(shù)的取值范圍;(3)通過方程的解與函數(shù)圖象之間的交點關系,可將題意轉化為函數(shù)的圖象與直線有兩個交點,即可由圖象求出實數(shù)的取值范圍.【詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時,,的最大值為2,∴要使方程在上有兩個不同的解,即函數(shù)的圖象與直線有兩個交點,由圖象可知,即,所以【點睛】本題主要考查三角函數(shù)的圖象與性質的應用,以及利用二倍角公式、兩角差的余弦公式、兩角和的正弦公式進行三角恒等變換,同時還考查了轉化與化歸思想,數(shù)形結合思想的應用.20、(1);(2)θ=時,四邊形OACB的面積最大,其最大面積為.【解析】
(1)根據(jù)余弦定理可求得(2)先表示出△ABC的面積及△OAB的面積,進而表示出四邊形OACB的面積,并化簡函數(shù)的解析式為正弦型函數(shù)的形式,再結合正弦型函數(shù)最值的求法進行求解.【詳解】(1)由余弦定理得則(2)四邊形OACB的面積=△OAB的面積+△ABC的面積則△ABC的面積△OAB的面積?OA?OB?sinθ?2?4?sinθ=4sinθ四邊形OACB的面積4sinθ=sin(θ﹣)∴當θ﹣=,即θ=時,四邊形OACB的面積最大,其最大面積為.【點睛】本題考查利用正余弦定理求解面積最值,其中準確列出面積表達式是關鍵,考查化簡求值能力,是中檔題21、(1)(2)符合【解析】
:(1)先列舉出從5戶郊區(qū)居民用戶中隨機抽取2戶,其年人均用水量構成的所有基本事件,再列舉其中年人均用水量都不超過30噸的基本事件,最后計算即可.(2)設該城市郊區(qū)的居民用戶數(shù)為,則其城區(qū)的居民用戶數(shù)為5a.依題意計算該城市年人均用水量不超過30噸的居民用戶的百分率.【詳解】解:(1)從5戶郊區(qū)居民用戶中隨機抽取2戶,其年人均用水量構成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國防火面料行業(yè)發(fā)展趨勢預測及投資戰(zhàn)略咨詢報告
- 2024-2026年中國手寫板行業(yè)市場供需格局及行業(yè)前景展望報告
- 堆浸行業(yè)深度研究報告
- 臨滄稅務咨詢合同范本
- 2025年度文化娛樂場所租賃及運營管理合同
- 傳媒公司拍攝合同范本
- 532裝修合同范本
- 城區(qū)房屋租賃合同范本
- 2025年膨化食品生產(chǎn)線行業(yè)深度研究分析報告
- 礦山生產(chǎn)承包合同范本
- 2024-2025學年陜西省西安市浐灞區(qū)數(shù)學三年級第一學期期末統(tǒng)考試題含解析
- 《鈉離子電池用電解液編制說明》
- 護理人員的職業(yè)安全防護
- 2024數(shù)據(jù)中心綜合布線工程設計
- 胸外科講課全套
- 醫(yī)療器械GSP相關
- 2023年海南省公務員錄用考試《行測》真題卷及答案解析
- 電力工程施工售后保障方案
- 中國心力衰竭診斷和治療指南2024解讀(完整版)
- 多源數(shù)據(jù)整合
- 新人教版高中數(shù)學必修第二冊第六章平面向量及其應用教案 (一)
評論
0/150
提交評論