2025屆吉林省吉林市第二中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2025屆吉林省吉林市第二中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2025屆吉林省吉林市第二中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2025屆吉林省吉林市第二中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2025屆吉林省吉林市第二中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆吉林省吉林市第二中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c依次成等差數(shù)列,,,依次成等比數(shù)列,則的形狀為()A.等邊三角形 B.等腰直角三角形C.鈍角三角形 D.直角邊不相等的直角三角形2.已知集合,則().A. B. C. D.3.直線在軸上的截距為()A.2 B.﹣3 C.﹣2 D.34.直線的傾斜角的取值范圍是()A. B. C. D.5.在等差數(shù)列中,,則數(shù)列前項和取最大值時,的值等于()A.12 B.11 C.10 D.96.直線與、為端點(diǎn)的線段有公共點(diǎn),則k的取值范圍是()A. B.C. D.7.在銳角中,角,,所對的邊分別為,,,邊上的高,且,則等于()A. B. C. D.8.把函數(shù)y=sin(2x﹣)的圖象向右平移個單位得到的函數(shù)解析式為()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x9.等差數(shù)列中,,且,且,是其前項和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于10.已知角的終邊經(jīng)過點(diǎn),則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在直三棱柱中,,,,則異面直線與所成角的余弦值是_____________.12.在△ABC中,點(diǎn)M,N滿足,若,則x=________,y=________.13.已知向量,,,則_________.14.函數(shù)的最小正周期是________.15.圓上的點(diǎn)到直線的距離的最小值是______.16.中,,,,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系xOy中,已知點(diǎn),,,.(1)①證明:;②證明:存在點(diǎn)P使得.并求出P的坐標(biāo);(2)過C點(diǎn)的直線將四邊形ABCD分成周長相等的兩部分,產(chǎn)生的另一個交點(diǎn)為E,求點(diǎn)E的坐標(biāo).18.如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).求證:(1)平面;(2).19.如圖,四邊形ABCD是平行四邊形,點(diǎn)E,F(xiàn),G分別為線段BC,PB,AD的中點(diǎn).(1)證明:EF∥平面PAC;(2)證明:平面PCG∥平面AEF;(3)在線段BD上找一點(diǎn)H,使得FH∥平面PCG,并說明理由.20.如圖所示,在直三棱柱(側(cè)面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,設(shè)的中點(diǎn)為D,.(1)求證:平面;(2)求證:.21.在平面直角坐標(biāo)系中,已知向量,.(1)求證:且;(2)設(shè)向量,,且,求實(shí)數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)a,b,c依次成等差數(shù)列,,,依次成等比數(shù)列,利用等差、等比中項的性質(zhì)可知,根據(jù)基本不等式求得a=c,判斷出a=b=c,推出結(jié)果.【詳解】由a,b,c依次成等差數(shù)列,有2b=a+c(1)由,,成等比數(shù)列,有(2),由(1)(2)得,又根據(jù),當(dāng)a=c時等號成立,∴可得a=c,∴,綜上可得a=b=c,所以△ABC為等邊三角形.故選:A.【點(diǎn)睛】本題考查三角形的形狀判斷,結(jié)合等差、等比數(shù)列性質(zhì)及基本不等式關(guān)系可得三邊關(guān)系,從而求解,考查綜合分析能力,屬于中等題.2、B【解析】

求解一元二次不等式的解集,化簡集合的表示,最后運(yùn)用集合交集的定義,結(jié)合數(shù)軸求出.【詳解】因為,所以,故本題選B.【點(diǎn)睛】本題考查了一元二次不等式的解法,考查了集合交集的運(yùn)算,正確求解一元二次不等式的解集、運(yùn)用數(shù)軸是解題的關(guān)鍵.3、B【解析】

令,求出值則是截距。【詳解】直線方程化為斜截式為:,時,,所以,在軸上的截距為-3。【點(diǎn)睛】軸上的截距:即令,求出值;同理軸上的截距:即令,求出值4、B【解析】

由直線的方程可確定直線的斜率,可得其范圍,進(jìn)而可求傾斜角的取值范圍.【詳解】解:直線的斜率為,,根據(jù)正切函數(shù)的性質(zhì)可得傾斜角的取值范圍是故選:.【點(diǎn)睛】本題考查直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.5、C【解析】試題分析:最大,考點(diǎn):數(shù)列單調(diào)性點(diǎn)評:求解本題的關(guān)鍵是由已知得到數(shù)列是遞減數(shù)列,進(jìn)而轉(zhuǎn)化為尋找最小的正數(shù)項6、D【解析】

由直線方程可得直線恒過點(diǎn),利用兩點(diǎn)連線斜率公式可求得臨界值和,從而求得結(jié)果.【詳解】直線恒過點(diǎn)則,本題正確選項:【點(diǎn)睛】本題考查利用直線與線段有交點(diǎn)確定直線斜率取值范圍的問題,關(guān)鍵是能夠確定直線恒過的定點(diǎn),從而找到直線與線段有交點(diǎn)的臨界狀態(tài).7、A【解析】

在中得到,,在中得到,利用面積公式計算得到.【詳解】如圖所示:在中:,根據(jù)勾股定理得到在中:利用勾股定理得到,故故選A【點(diǎn)睛】本題考查了勾股定理,面積公式,意在考查學(xué)生解決問題的能力.8、D【解析】試題分析:三角函數(shù)的平移原則為左加右減上加下減.直接求出平移后的函數(shù)解析式即可.解:把函數(shù)y=sin(2x﹣)的圖象向右平移個單位,所得到的圖象的函數(shù)解析式為:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故選D.考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換.9、C【解析】

由,且可得,,,,結(jié)合等差數(shù)列的求和公式即等差數(shù)列的性質(zhì)即可判斷.【詳解】,且,,數(shù)列的前項都是負(fù)數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前項和符號的判斷,解題時要充分結(jié)合等差數(shù)列下標(biāo)和的性質(zhì)以及等差數(shù)列求和公式進(jìn)行計算,考查分析問題和解決問題的能力,屬于中等題.10、D【解析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點(diǎn):三角函數(shù)的概念.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先找出線面角,運(yùn)用余弦定理進(jìn)行求解【詳解】連接交于點(diǎn),取中點(diǎn),連接,則,連接為異面直線與所成角在中,,,同理可得,,異面直線與所成角的余弦值是故答案為【點(diǎn)睛】本題主要考查了異面直線所成的角,考查了空間想象能力,運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.12、【解析】特殊化,不妨設(shè),利用坐標(biāo)法,以A為原點(diǎn),AB為軸,為軸,建立直角坐標(biāo)系,,,則,.考點(diǎn):本題考點(diǎn)為平面向量有關(guān)知識與計算,利用向量相等解題.13、【解析】

根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點(diǎn)睛】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.14、【解析】

根據(jù)函數(shù)的周期公式計算即可.【詳解】函數(shù)的最小正周期是.故答案為【點(diǎn)睛】本題主要考查了正切函數(shù)周期公式的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

求圓心到直線的距離,用距離減去半徑即可最小值.【詳解】圓C的圓心為,半徑為,圓心C到直線的距離為:,所以最小值為:故答案為:【點(diǎn)睛】本題考查圓上的點(diǎn)到直線的距離的最值,若圓心距為d,圓的半徑為r且圓與直線相離,則圓上的點(diǎn)到直線距離的最大值為d+r,最小值為d-r.16、【解析】

根據(jù),得到的值,再由余弦定理,得到的值.【詳解】因為,所以,在中,,,由余弦定理得.所以.故答案為:【點(diǎn)睛】本題考查二倍角的余弦公式,余弦定理解三角形,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①見解析;②見解析,;(2).【解析】

(1)①利用夾角公式可得;②由條件知點(diǎn)為四邊形外接圓的圓心,根據(jù),可得,四邊形外接圓的圓心為的中點(diǎn),然后求出點(diǎn)的坐標(biāo);(2)根據(jù)條件可得,然后設(shè)的坐標(biāo)為,根據(jù),可得的坐標(biāo).【詳解】(1)①,,,,,,,,,,;②由知,點(diǎn)為四邊形外接圓的圓心,,,,,四邊形外接圓的圓心為的中點(diǎn),點(diǎn)的坐標(biāo)為;(2)由兩點(diǎn)間的距離公式可得,,,,過點(diǎn)的直線將四邊形分成周長相等的兩部分,,設(shè)的坐標(biāo)為,則,,,,點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查向量的夾角公式、向量相等、向量的運(yùn)算性質(zhì)、兩點(diǎn)間的距離公式等,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.18、(1)見解析;(2)見解析【解析】

(1)連AF交BE于Q,連QO,推導(dǎo)出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.(2)推導(dǎo)出BO⊥AC,從而BO⊥面PAC,進(jìn)而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO,利用線面垂直的性質(zhì)可證PA⊥BE.【詳解】(1)連接AF交BE于Q,連接QO,因為E,F(xiàn)分別為邊PA,PB的中點(diǎn),所以Q為△PAB的重心,可得:2,又因為O為線段AC的中點(diǎn),G是線段CO的中點(diǎn),所以2,于是,所以FG∥QO,因為FG?平面EBO,QO?平面EBO,所以FG∥平面EBO.(2)因為O為邊AC的中點(diǎn),AB=BC,所以BO⊥AC,因為平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO?平面ABC,所以BO⊥平面PAC,因為PA?平面PAC,所以BO⊥PA,因為點(diǎn)E,O分別為線段PA,AC的中點(diǎn),所以EO∥PC,因為PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO?平面EBO,所以PA⊥平面EBO,因為BE?平面EBO,所以PA⊥BE.【點(diǎn)睛】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.19、(1)見解析(2)見解析(3)見解析【解析】

(1)證明,EF∥平面PAC即得證;(2)證明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得證;(3)設(shè)AE,GC與BD分別交于M,N兩點(diǎn),證明N點(diǎn)為所找的H點(diǎn).【詳解】(1)證明:∵E、F分別是BC,BP中點(diǎn),∴,∵PC?平面PAC,EF?平面PAC,∴EF∥平面PAC.(2)證明:∵E、G分別是BC、AD中點(diǎn),∴AE∥CG,∵AE?平面PCG,CG?平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC?平面PCG,EF?平面PCG,∴EF∥平面PCG,AE∩EF=E點(diǎn),AE,EF?平面AEF,∴平面AEF∥平面PCG.(3)設(shè)AE,GC與BD分別交于M,N兩點(diǎn),易知F,N分別是BP,BM中點(diǎn),∴,∵PM?平面PGC,F(xiàn)N?平面PGC,∴FN∥平面PGC,即N點(diǎn)為所找的H點(diǎn).【點(diǎn)睛】本題主要考查空間平行位置關(guān)系的證明,考查立體幾何的探究性問題的解決,意在考查學(xué)生對這些知識的理解掌握水平.20、(1)見解析;(2)見解析.【解析】

(1)由可證平面;(2)先證,再證,即可證明平面,即可得出.【詳解】(1)∵三棱柱為直三棱柱,∴四邊形為矩形,∴E為中點(diǎn),又D點(diǎn)為中點(diǎn),∴DE為的中位線,∴,又平面,平面,∴平面;(2)∵三棱柱為直三棱柱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論