浙江省上杭縣達標(biāo)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第1頁
浙江省上杭縣達標(biāo)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第2頁
浙江省上杭縣達標(biāo)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第3頁
浙江省上杭縣達標(biāo)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第4頁
浙江省上杭縣達標(biāo)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省上杭縣達標(biāo)名校2024年中考數(shù)學(xué)最后一模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數(shù)y=x2+bx﹣9圖象上A、B兩點關(guān)于原點對稱,若經(jīng)過A點的反比例函數(shù)的解析式是y=,則該二次函數(shù)的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣2.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設(shè)點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當(dāng)它第一次回到起始位置時,這個圖形在運動中掃過區(qū)域面積是()A.18π B.27π C.π D.45π3.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.4.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:45.若是關(guān)于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.36.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.7.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°8.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.若設(shè)走路線一時的平均速度為x千米/小時,根據(jù)題意,得A.25x-C.30(1+80%)x-9.如圖是由五個相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.10.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.16二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.12.已知一個等腰三角形的兩邊長分別為2和4,則該等腰三角形的周長是.13.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉(zhuǎn),使點C旋轉(zhuǎn)到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結(jié)果保留π).14.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.15.如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.16.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點P是斜邊AB上的點,過點P作⊙C的一條切線PQ(點Q是切點),則線段PQ的最小值為_____.17.如圖,小明想用圖中所示的扇形紙片圍成一個圓錐,已知扇形的半徑為5cm,弧長是cm,那么圍成的圓錐的高度是cm.三、解答題(共7小題,滿分69分)18.(10分)2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風(fēng)景線.大橋主體工程隧道的東、西兩端各設(shè)置了一個海中人工島,來銜接橋梁和海地隧道,西人工島上的點和東人工島上的點間的距離約為5.6千米,點是與西人工島相連的大橋上的一點,,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達點時觀測兩個人工島,分別測得,與觀光船航向的夾角,,求此時觀光船到大橋段的距離的長(參考數(shù)據(jù):,,,,,).19.(5分)在平面直角坐標(biāo)系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當(dāng)它經(jīng)過M關(guān)于坐標(biāo)軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經(jīng)過點M且與直線y=﹣x+4交點的橫坐標(biāo)為n,當(dāng)y=kx+b隨x的增大而增大時,則n取值范圍是_____.20.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.21.(10分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標(biāo)為(3,0),經(jīng)過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.22.(10分)解不等式組,并將解集在數(shù)軸上表示出來.23.(12分)如圖,已知,.求證.24.(14分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉調(diào)運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調(diào)運一噸糧食到C市和D市的運費分別為300元和500元.設(shè)B糧倉運往C市糧食x噸,求總運費W(元)關(guān)于x的函數(shù)關(guān)系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調(diào)運方案?求出總運費最低的調(diào)運方案,最低運費是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

設(shè)A點坐標(biāo)為(a,),則可求得B點坐標(biāo),把兩點坐標(biāo)代入拋物線的解析式可得到關(guān)于a和b的方程組,可求得b的值,則可求得二次函數(shù)的對稱軸.【詳解】解:∵A在反比例函數(shù)圖象上,∴可設(shè)A點坐標(biāo)為(a,).∵A、B兩點關(guān)于原點對稱,∴B點坐標(biāo)為(﹣a,﹣).又∵A、B兩點在二次函數(shù)圖象上,∴代入二次函數(shù)解析式可得:,解得:或,∴二次函數(shù)對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數(shù)的性質(zhì),待定系數(shù)法求二次函數(shù)解析式,根據(jù)條件先求得b的值是解題的關(guān)鍵,注意掌握關(guān)于原點對稱的兩點的坐標(biāo)的關(guān)系.2、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關(guān)鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.3、A【解析】

此題考查了概率公式的應(yīng)用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗,a=1是原分式方程的解,故本題選A.4、C【解析】

由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【點睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.5、D【解析】

解:設(shè)方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.6、D【解析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.7、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補,并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補.8、A【解析】若設(shè)走路線一時的平均速度為x千米/小時,根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達可列出方程.解:設(shè)走路線一時的平均速度為x千米/小時,25故選A.9、A【解析】試題分析:從上面看易得上面一層有3個正方形,下面中間有一個正方形.故選A.【考點】簡單組合體的三視圖.10、D【解析】

由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質(zhì),即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質(zhì),比較簡單,注意數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.二、填空題(共7小題,每小題3分,滿分21分)11、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據(jù)此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應(yīng)頂點的連線平行或共線.12、1.【解析】試題分析:因為2+2<4,所以等腰三角形的腰的長度是4,底邊長2,周長:4+4+2=1,答:它的周長是1,故答案為1.考點:等腰三角形的性質(zhì);三角形三邊關(guān)系.13、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉(zhuǎn)得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),求出陰影部分的面積等于兩個扇形的面積的差是解題的關(guān)鍵.14、【解析】

過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進而可得AF=AO,根據(jù)正方形的性質(zhì)可得OB=OC,∠BOC=90°,由銳角互余的關(guān)系可得∠AOB=∠COF,進而可得△AOB≌△COF,即可證明AB=CF,當(dāng)點A、C、F三點不共線時,根據(jù)三角形的三邊關(guān)系可得AC+CF>AF,當(dāng)點A、C、F三點共線時可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當(dāng)點A、C、F三點不共線時,AC+CF>AF,當(dāng)點A、C、F三點共線時,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點睛】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握相關(guān)定理及性質(zhì)是解題關(guān)鍵.15、2.1【解析】

根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.1cm,故答案為2.1.【點評】本題考查了勾股定理,矩形性質(zhì),三角形中位線的應(yīng)用,熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.16、.【解析】

當(dāng)PC⊥AB時,線段PQ最短;連接CP、CQ,根據(jù)勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據(jù)勾股定理得:PQ2=CP2﹣CQ2,∴當(dāng)PC⊥AB時,線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點睛】本題考查了切線的性質(zhì)以及勾股定理的運用;注意掌握輔助線的作法,注意當(dāng)PC⊥AB時,線段PQ最短是關(guān)鍵.17、4【解析】

已知弧長即已知圍成的圓錐的底面半徑的長是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長是5cm.就可以根據(jù)勾股定理求出圓錐的高.【詳解】設(shè)底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.三、解答題(共7小題,滿分69分)18、5.6千米【解析】

設(shè)PD的長為x千米,DA的長為y千米,在Rt△PAD中利用正切的定義得到tan18°=,即y=0.33x,同樣在Rt△PDB中得到y(tǒng)+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【詳解】設(shè)PD的長為x千米,DA的長為y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此時觀光船到大橋AC段的距離PD的長為5.6千米.【點睛】本題考查了解直角三角形的應(yīng)用:根據(jù)題目已知特點選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實際問題的答案.19、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設(shè)直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關(guān)于x軸的對稱點為點M1(1,-2);②點M(1,2)關(guān)于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標(biāo)為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當(dāng)x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設(shè)直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關(guān)于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關(guān)于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標(biāo)為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點的坐標(biāo)特征,一次函數(shù)的性質(zhì),解一元一次不等式組,都是基礎(chǔ)知識,需熟練掌握.20、(1)見解析(2)6【解析】

(1)利用對應(yīng)兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:21、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】

(1)把點B和D的坐標(biāo)代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標(biāo),設(shè)直線AD的解析式為y=kx+a,把A和D的坐標(biāo)代入得出方程組,解方程組即可;(2)分兩種情況:①當(dāng)a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當(dāng)a>-1時,顯然F應(yīng)在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),代入拋物線解析式,即可得出結(jié)果.【詳解】解:(1)把點B和D的坐標(biāo)代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當(dāng)y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設(shè)直線AD的解析式為y=kx+a,把A和D的坐標(biāo)代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當(dāng)a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當(dāng)a>-1時,顯然F應(yīng)在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【點睛】本題考查拋物線與x軸的交點;二次函數(shù)的性質(zhì);待定系數(shù)法求二次函數(shù)解析式及平行四邊形的判定,綜合性較強.22、原不等式組的解集為﹣4<x≤1,在數(shù)軸上表示見解析.【解析】分析:根據(jù)解一元一次不等式組的步驟,大小小大中間找,可得答案詳解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在數(shù)軸上表示如圖,原不等式組的解集為﹣4<x≤1.點睛:本題考查了解一元一次不等式組,利用不等式組的解集的表示方法是解題關(guān)鍵.23、見解析【解析】

根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結(jié)論.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論