![2022-2023學年山東省昌邑市文山中學數(shù)學高三第一學期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view2/M02/18/0F/wKhkFmZvlY2AdcLZAAH7dZ51vE8415.jpg)
![2022-2023學年山東省昌邑市文山中學數(shù)學高三第一學期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view2/M02/18/0F/wKhkFmZvlY2AdcLZAAH7dZ51vE84152.jpg)
![2022-2023學年山東省昌邑市文山中學數(shù)學高三第一學期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view2/M02/18/0F/wKhkFmZvlY2AdcLZAAH7dZ51vE84153.jpg)
![2022-2023學年山東省昌邑市文山中學數(shù)學高三第一學期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view2/M02/18/0F/wKhkFmZvlY2AdcLZAAH7dZ51vE84154.jpg)
![2022-2023學年山東省昌邑市文山中學數(shù)學高三第一學期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view2/M02/18/0F/wKhkFmZvlY2AdcLZAAH7dZ51vE84155.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.2.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.3.已知是虛數(shù)單位,則復數(shù)()A. B. C.2 D.4.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.85.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強7.已知定義在上的偶函數(shù),當時,,設,則()A. B. C. D.8.在中,內(nèi)角的平分線交邊于點,,,,則的面積是()A. B. C. D.9.拋物線的焦點為,點是上一點,,則()A. B. C. D.10.已知,且,則在方向上的投影為()A. B. C. D.11.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.12.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.14.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.15.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.16.若點在直線上,則的值等于______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是各項都為正數(shù)的數(shù)列,其前項和為,且為與的等差中項.(1)求證:數(shù)列為等差數(shù)列;(2)設,求的前100項和.18.(12分)設函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.19.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.20.(12分)設數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設cn=bnan,求數(shù)列21.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.22.(10分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設P是橢圓上的動點,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于中檔題.2、C【解析】
,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.3、A【解析】
根據(jù)復數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數(shù)的基本運算,屬于基礎題.4、B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.【點睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應用.5、B【解析】
求出復數(shù),得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎題.6、D【解析】
根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.7、B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時,,求得導函數(shù),并構(gòu)造函數(shù),由進而判斷函數(shù)在時的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當時,,則,令則,當時,,則在時單調(diào)遞增,因為,所以,即,則在時單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質(zhì)應用,由導函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應用,根據(jù)單調(diào)性比較大小,屬于中檔題.8、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點睛】本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.9、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.10、C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.11、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關(guān)鍵.12、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標系,設,根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標表示,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結(jié)論.【詳解】由,,設的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質(zhì),解題的關(guān)鍵在于利用相交弦的性質(zhì),即兩圓的連心線垂直平分相交弦,屬于基礎題.14、24【解析】
先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎題.15、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.16、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.【點睛】本題考查誘導公式和同角的三角函數(shù)的關(guān)系,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當時,,當時,再利用進行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當時,由①式可得;又時,有,代入①式得,整理得,∴是首項為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項和.【點睛】本題考查數(shù)列遞推關(guān)系的應用,通項公式的求法以及裂項相消法求和,考查分析解題能力和計算能力.18、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當時,則在單調(diào)遞減,當時,則在單調(diào)遞增,所以,當時,,即,則在上單調(diào)遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設,欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.19、(1)見解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設,連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設平面的法向量為,則,即,∴可取,設平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點睛】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時先證明三條兩兩垂直的直線,屬于中檔題.20、(1)an=(2)Tn【解析】
(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數(shù)列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關(guān)系an=Sn-21、(1)(2)【解析】
(1)先分別表示出,然后根據(jù)求解出的值,則的標準方程可求;(2)設出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據(jù)距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標準方程為(2)設,設點,,顯然直線的斜率不為0.設直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標為【點睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應的定值問題,聯(lián)立直線方程借助韋達
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版八年級歷史(下)全冊復習聽課評課記錄(含教學反思)
- 生態(tài)農(nóng)業(yè)與環(huán)境保護教育普及
- 蘇科版數(shù)學七年級上冊5.3.2《展開與折疊》聽評課記錄
- 未來家居中的智能快速干衣技術(shù)展望
- 八年級上冊歷史人教版同步聽課評課記錄第17課《中國工農(nóng)紅軍長征》
- 基于模糊邏輯的血壓分級方法研究
- PD-1-PD-L1抑制劑作為疫苗佐劑增強細胞免疫的作用評價
- 準晶中復雜缺陷彈塑性斷裂力學問題研究
- 老年大學古詩詞誦讀課程計劃
- 旅游行業(yè)巡察工作心得體會
- 2025年汽車零部件項目可行性研究報告
- (一診)畢節(jié)市2025屆高三第一次診斷性考試 英語試卷(含答案)
- 2025福建新華發(fā)行(集團)限責任公司校園招聘30人高頻重點提升(共500題)附帶答案詳解
- 油氣長輸管道檢查標準清單
- 山東鐵投集團招聘筆試沖刺題2025
- 小學二年級100以內(nèi)連加連減豎式計算練習題
- 圖像敘事的跨學科視野-洞察分析
- 2025年天津市政集團公司招聘筆試參考題庫含答案解析
- 急性缺血性卒中再灌注治療指南2024解讀
- 暑假假期安全教育(課件)-小學生主題班會
- 2025年中考英語總復習:閱讀理解練習題30篇(含答案解析)
評論
0/150
提交評論