南陽市重點中學高三下學期一模考試新高考數(shù)學試題及答案解析_第1頁
南陽市重點中學高三下學期一??荚囆赂呖紨?shù)學試題及答案解析_第2頁
南陽市重點中學高三下學期一??荚囆赂呖紨?shù)學試題及答案解析_第3頁
南陽市重點中學高三下學期一??荚囆赂呖紨?shù)學試題及答案解析_第4頁
南陽市重點中學高三下學期一模考試新高考數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

南陽市重點中學高三下學期一??荚囆赂呖紨?shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.2.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.3.設集合,則()A. B. C. D.4.已知函數(shù),以下結論正確的個數(shù)為()①當時,函數(shù)的圖象的對稱中心為;②當時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當時,在上的最大值為1.A.1 B.2 C.3 D.45.設為銳角,若,則的值為()A. B. C. D.6.已知復數(shù)滿足,則()A. B. C. D.7.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.8.已知m為實數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.下列函數(shù)中既關于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.10.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.11.的展開式中的系數(shù)是()A.160 B.240 C.280 D.32012.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.14.已知向量滿足,且,則_________.15.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經(jīng)過,則點到拋物線頂點的距離的最小值是__________.16.若存在實數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,圓的參數(shù)方程為:(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.(1)求圓的極坐標方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:①點的極角;②面積的取值范圍.19.(12分)設函數(shù),其中是自然對數(shù)的底數(shù).(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.20.(12分)已知函數(shù).(Ⅰ)當時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.21.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.22.(10分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設,且有兩個極值點,,若,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據(jù)點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.2、D【解析】

按照復數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎題.3、C【解析】

解對數(shù)不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運算,屬于基礎題.4、C【解析】

逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導數(shù),若滿足條件,則極值點必在區(qū)間;④利用導數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.5、D【解析】

用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯(lián)系.6、A【解析】

由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.7、C【解析】

設出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.8、A【解析】

根據(jù)直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗看兩直線是否重合.9、C【解析】

根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎題.10、C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.11、C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點睛】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關鍵,屬于基礎題.12、D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.14、【解析】

由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.15、【解析】

根據(jù)拋物線,不妨設,取,通過求導得,,再根據(jù)以線段為直徑的圓恰好經(jīng)過,則,得到,兩式聯(lián)立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經(jīng)過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2【點睛】本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.16、①②④【解析】

由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點,若兩函數(shù)在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】

(1)消去參數(shù)可得圓的直角坐標方程,再根據(jù),,即可得極坐標方程;(2)寫出直線的極坐標方程為,代入圓的極坐標方程,根據(jù)極坐標的意義列出等式解出即可.【詳解】(1)圓:,消去參數(shù)得:,即:,∵,,.∴,.(2)∵直線:的極坐標方程為,當時.即:,∴或.∴或,∴直線的傾斜角為或.【點睛】本題主要考查了參數(shù)方程化為普通方程,直角坐標方程化為極坐標方程以及極坐標的幾何意義,屬于中檔題.18、(1)曲線為圓心在原點,半徑為2的圓.的極坐標方程為(2)①②【解析】

(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對應的曲線,并將的普通方程轉(zhuǎn)化為極坐標方程.(2)①將的極角代入直線的極坐標方程,由此求得點的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進而求得,從而求得點的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點到直線的距離的表達式,結合三角函數(shù)的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點到直線的距離的最大值和最小值,進而求得面積的取值范圍.【詳解】(1)因為曲線的參數(shù)方程為(為參數(shù)),因為則曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點,半徑為2的圓.所以的極坐標方程為,即.(2)①點的極角為,代入直線的極坐標方程得點極徑為,且,所以為等腰三角形,又直線的普通方程為,又點的極角為銳角,所以,所以,所以點的極角為.②解法1:直線的普通方程為.曲線上的點到直線的距離.當,即()時,取到最小值為.當,即()時,取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因為圓的半徑為2,且圓心到直線的距離,因為,所以圓與直線相離.所以圓上的點到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點睛】本小題考查坐標變換,極徑與極角;直線,圓的極坐標方程,圓的參數(shù)方程,直線的極坐標方程與普通方程,點到直線的距離等.考查數(shù)學運算能力,包括運算原理的理解與應用、運算方法的選擇與優(yōu)化、運算結果的檢驗與改進等.也兼考了數(shù)學抽象素養(yǎng)、邏輯推理、數(shù)學運算、直觀想象等核心素養(yǎng).19、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個極值點,等價于在有兩個不等實根,由可得,,令,則,令,可得,當時,,所以在上單調(diào)遞減,且當時,單調(diào)遞增;當時,單調(diào)遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設,即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),,即成立成立,所以成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性、極值,利用導數(shù)證明不等式,屬于難題;20、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)首先求得導函數(shù),然后結合導函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進行等價轉(zhuǎn)化為,,恒成立,然后構造新函數(shù),結合函數(shù)的性質(zhì)確定實數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數(shù)在上單調(diào)遞減;當時,由得:;由得:.∴當時,函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當時,函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論