版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省攀枝花市2025屆高一數(shù)學第二學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,且,則與的夾角為()A. B. C. D.2.如圖,飛機的航線和山頂在同一個鉛垂平面內(nèi),已知飛機的高度為海拔20000m,速度為900km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過80s后又看到山頂?shù)母┙菫?5A.5000(3+1)C.5000(3-3)3.已知點A(1,0),B(0,1),C(–2,–3),則△ABC的面積為A.3 B.2 C.1 D.4.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.5.某小組共有5名學生,其中男生3名,女生2名,現(xiàn)選舉2名代表,則恰有1名女生當選的概率為()A. B. C. D.6.經(jīng)過兩條直線和的交點,且垂直于直線的直線方程為()A. B. C. D.7.下列結(jié)論正確的是()A.空間中不同三點確定一個平面B.空間中兩兩相交的三條直線確定一個平面C.一條直線和一個點能確定一個平面D.梯形一定是平面圖形8.直線l:的傾斜角為()A. B. C. D.9.已知點是直線上一動點,與是圓的兩條切線,為切點,則四邊形的最小面積為()A. B. C. D.10.化為弧度是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某中學為了了解全校學生的閱讀情況,在全校采用隨機抽樣的方法抽取一個樣本進行問卷調(diào)查,并將他們在一個月內(nèi)去圖書館的次數(shù)進行了統(tǒng)計,將學生去圖書館的次數(shù)分為5組:制作了如圖所示的頻率分布表,則抽樣總?cè)藬?shù)為_______.12.在等差數(shù)列中,公差不為零,且、、恰好為某等比數(shù)列的前三項,那么該等比數(shù)列公比的值等于____________.13.某校高一、高二、高三分別有學生1600名、1200名、800名,為了解該校高中學生的牙齒健康狀況,按各年級的學生數(shù)進行分層抽樣,若高三抽取20名學生,則高一、高二共抽取的學生數(shù)為.14.中,若,,則角C的取值范圍是________.15.已知,,則______,______.16.無窮等比數(shù)列的首項是某個正整數(shù),公比為單位分數(shù)(即形如:的分數(shù),為正整數(shù)),若該數(shù)列的各項和為3,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.18.如圖,邊長為2的正方形中.(1)點是的中點,點是的中點,將、分別沿,折起,使,兩點重合于點,求證:;(2)當時,將、分別沿,折起,使,兩點重合于點,求三棱錐的體積.19.如下圖,長方體ABCD-A1B1C1D1中,(1)當點E在AB上移動時,三棱錐D-D(2)當點E在AB上移動時,是否始終有D120.已知.(1)求的值;(2)求的值.21.定義在R上的函數(shù)f(x)=|x2﹣ax|(a∈R),設g(x)=f(x+l)﹣f(x).(1)若y=g(x)為奇函數(shù),求a的值:(2)設h(x),x∈(0,+∞)①若a≤0,證明:h(x)>2:②若h(x)的最小值為﹣1,求a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
直接由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】設與的夾角為,由,,,所以.故選:D【點睛】本題主要考查平面向量的數(shù)量積公式.2、C【解析】分析:先求AB的長,在△ABC中,可求BC的長,進而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山頂?shù)暮0胃叨龋斀猓喝鐖D,∠A=30°,∠ACB=45°,
AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30點睛:本題以實際問題為載體,考查正弦定理的運用,關鍵是理解俯角的概念,屬于基礎題.3、A【解析】
由兩點式求得直線的方程,利用點到直線距離公式求得三角形的高,由兩點間距離公式求得的長,從而根據(jù)三角形面積公式可得結(jié)果.【詳解】∵點A(1,0),B(0,1),∴直線AB的方程為x+y–1=0,,又∵點C(–2,–3)到直線AB的距離為,∴△ABC的面積為S=.故選A.【點睛】本題主要考查兩點間的距離公式,點到直線的距離公式、三角形面積公式以及直線方程的應用,意在考查綜合運用所學知識解答問題的能力,屬于中檔題.4、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關幾何體體積公式進行計算.由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.5、B【解析】
記三名男生為,兩名女生為,分別列舉出基本事件,得出基本事件總數(shù)和恰有1名女生當選包含的基本事件個數(shù),即可得解.【詳解】記三名男生為,兩名女生為,任選2名所有可能情況為,共10種,恰有一名女生的情況為,共6種,所以恰有1名女生當選的概率為.故選:B【點睛】此題考查根據(jù)古典概型求概率,關鍵在于準確計算出基本事件總數(shù),和某一事件包含的基本事件個數(shù).6、D【解析】
首先求出兩條直線的交點坐標,再根據(jù)垂直求出斜率,點斜式寫方程即可.【詳解】有題知:,解得:,交點.直線的斜率為,所求直線斜率為.所求直線為:,即.故選:D【點睛】本題主要考查如何求兩條直線的交點坐標,同時考查了兩條直線的位置關系,屬于簡單題.7、D【解析】空間中不共線三點確定一個平面,空間中兩兩相交的三條直線確定一個或三個平面,一條直線和一個直線外一點能確定一個平面,梯形有兩對邊相互平行,所以梯形一定是平面圖形,因此選D.8、C【解析】
由直線的斜率,又,再求解即可.【詳解】解:由直線l:,則直線的斜率,又,所以,即直線l:的傾斜角為,故選:C.【點睛】本題考查了直線傾斜角的求法,屬基礎題.9、A【解析】
利用當與直線垂直時,取最小值,并利用點到直線的距離公式計算出的最小值,然后利用勾股定理計算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當取最小值時,、也取得最小值,顯然當與直線垂直時,取最小值,且該最小值為點到直線的距離,即,此時,,四邊形面積的最小值為,故選A.【點睛】本題考查直線與圓的位置關系,考查切線長的計算以及四邊形的面積,本題在求解切線長的最小值時,要抓住以下兩點:(1)計算切線長應利用勾股定理,即以點到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時,點到圓心的距離也取到最小值.10、D【解析】
由于,則.【詳解】因為,所以,故選D.【點睛】本題考查角度制與弧度制的互化.二、填空題:本大題共6小題,每小題5分,共30分。11、20【解析】
總體人數(shù)占的概率是1,也可以理解成每個人在整體占的比重一樣,所以三組的頻率為:,共有14人,即14人占了整體的0.7,那么整體共有人?!驹斀狻壳叭M,即三組的頻率為:,,解得:【點睛】此題考查概率,通過部分占總體的概率即可計算出總體的樣本值,屬于簡單題目。12、4【解析】
由題意將表示為的方程組求解得,即可得等比數(shù)列的前三項分別為﹑、,則公比可求【詳解】由題意可知,,又因為,,代入上式可得,所以該等比數(shù)列的前三項分別為﹑、,所以.故答案為:4【點睛】本題考查等差等比數(shù)列的基本量計算,考查計算能力,是基礎題13、70【解析】設高一、高二抽取的人數(shù)分別為,則,解得.【考點】分層抽樣.14、;【解析】
由,利用正弦定理邊角互化以及兩角和的正弦公式可得,進而可得結(jié)果.【詳解】由正弦定理可得,又,則,即,則,C是三角形的內(nèi)角,則,故答案為:.【點睛】本題注意考查正弦定理以及兩角和的正弦公式的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.15、【解析】
由的值,可求出的值,再判斷角的范圍,可判斷出,進而將平方,可求出答案.【詳解】由題意,,因為,所以,即;又因為,所以,即,而,由于,可知,所以,則,即.故答案為:;.【點睛】本題考查同角三角函數(shù)基本關系的應用,考查二倍角公式的應用,考查學生的計算求解能力,屬于中檔題.16、【解析】
利用無窮等比數(shù)列的各項和,可求得,從而,利用首項是某個自然數(shù),可求,進而可求出.【詳解】無窮等比數(shù)列各項和為3,,是個自然數(shù),則,.故答案為:【點睛】本題主要考查了等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】
(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an?bn=(2n+1)?3n,前n項和Sn=3?3+5?32+7?33+…+(2n+1)?3n,3Sn=3?32+5?33+7?34+…+(2n+1)?3n+1,兩式相減可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)?3n+1=9+2?(2n+1)?3n+1,化簡可得Sn=n?3n+1.【點睛】本小題主要考查等差數(shù)列,等比數(shù)列通項公式,考查錯位相減求和法,考查運算求解能力,屬于中檔題.18、(1)證明見解析;(2)【解析】
(1)折疊過程中,,保持不變,即,,由此可得線面垂直,從而有線線垂直;(2)由(1)知面,即是三棱錐的高,求出底面積可得體積.【詳解】(1)證明:由,.可得:,,,面又面(2)解:在三棱錐中,,,面,由,,可得.【點睛】本題考查證明線線垂直,考查求棱錐的體積.立體幾何中證明線線垂直,通常由線面垂直的性質(zhì)定理給出,即先證線面垂直,而證線面垂直又必須證明線線垂直,注意線線垂直與線面垂直的轉(zhuǎn)化.三棱錐中任何一個面都可以當作底面,因此一般尋找高易得的面為底面,常用換底法求體積.19、(1)13【解析】(I)三棱錐D-D∵∴V(II)當點E在AB上移動時,始終有D1證明:連接AD1,∵四邊形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB?∴A1D⊥平面又D1E?平面∴D120、(1);(2)【解析】
試題分析:(1)利用正切的兩角和公式求的值;(2)利用第一問的結(jié)果求第二問,但需要先將式子化簡,最后變形成關于的式子,需要運用三角函數(shù)的倍角公式將化成單角的三角函數(shù),然后分子分母都除以,然后代入的值即可.試題解析:(1)由(2)考點:1.正切的兩角和公式;2.正余弦的倍角公式.21、(1)a=1(2)①證明見解析②(1,+∞)【解析】
(1)根據(jù)函數(shù)是定義在上的奇函數(shù),令,即可求出的值;(2)①先去絕對值,再把分離常數(shù)即可證明;②根據(jù)的最小值為,分和兩種情況討論即可得出的取值范圍.【詳解】(1)∵g(x)=|(x+1)2﹣a(x+1)|﹣|x2﹣ax|,一方面,由g(0)=0,得|1﹣a|=0,a=1,另一方面,當a=1時,g(x)=|(x+1)2﹣a(x+1)|﹣|x2﹣x|=|x2+x|﹣|x2﹣x|,所以,g(﹣x)=|x2﹣x|﹣|x2+x|=﹣g(x),即g(x)是奇函數(shù).綜上可知a=1.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年花卉保養(yǎng)服務協(xié)議范本
- 2023-2024學年浙江省溫州市蒼南縣金鄉(xiāng)衛(wèi)城中學高三5月第二次聯(lián)考數(shù)學試題文試卷
- 2023-2024學年浙江省金蘭教育合作組織高三下學期質(zhì)量調(diào)查(一)數(shù)學試題
- 2024年設計服務外包協(xié)議范本2
- 2024年深度鉆井工程服務協(xié)議
- 2024年荒山開發(fā)承包協(xié)議樣本
- 2024年個人消費貸款協(xié)議模板指南
- 2024年適用車輛租賃長租協(xié)議樣式
- 底商租賃協(xié)議精簡(2024年)
- 2024移動網(wǎng)絡運營商服務協(xié)議
- 康復醫(yī)院設置標準匯總
- CA碼生成原理及matlab程序?qū)崿F(xiàn)
- 國家開放大學《電氣傳動與調(diào)速系統(tǒng)》章節(jié)測試參考答案
- 須彌(短篇小說)
- 旋風除塵器設計與計算
- 《裝配基礎知識培訓》
- 出口退稅的具體計算方法及出口報價技巧
- PCB鍍層與SMT焊接
- Unit 1 This is my new friend. Lesson 5 課件
- 2019年青年英才培養(yǎng)計劃項目申報表
- 芳香油的提取
評論
0/150
提交評論