2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.2.已知一元二次方程x2-8x+15=0的兩個(gè)解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.123.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.4.一個(gè)不透明的袋中有四張完全相同的卡片,把它們分別標(biāo)上數(shù)字1、2、3、1.隨機(jī)抽取一張卡片,然后放回,再隨機(jī)抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.5.將拋物線向左平移1個(gè)單位,再向下平移3個(gè)單位后所得拋物線的解析式為()A. B. C. D.6.4的平方根是()A.4 B.±4 C.±2 D.27.如圖,A、B兩點(diǎn)在雙曲線y=上,分別經(jīng)過A、B兩點(diǎn)向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.68.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東30°方向上的B處,這時(shí),B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile9.某班為獎(jiǎng)勵(lì)在學(xué)校運(yùn)動(dòng)會(huì)上取得好成績的同學(xué),計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件.其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件.設(shè)購買甲種獎(jiǎng)品x件,乙種獎(jiǎng)品y件.依題意,可列方程組為()A. B.C. D.10.下列圖形中,主視圖為①的是()A. B. C. D.11.如圖,若數(shù)軸上的點(diǎn)A,B分別與實(shí)數(shù)﹣1,1對(duì)應(yīng),用圓規(guī)在數(shù)軸上畫點(diǎn)C,則與點(diǎn)C對(duì)應(yīng)的實(shí)數(shù)是()A.2 B.3 C.4 D.512.點(diǎn)A(a,3)與點(diǎn)B(4,b)關(guān)于y軸對(duì)稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.72017二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.14.如圖,將一個(gè)長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.15.已知是整數(shù),則正整數(shù)n的最小值為___16.若一個(gè)三角形兩邊的垂直平分線的交點(diǎn)在第三邊上,則這個(gè)三角形是_____三角形.17.在?ABCD中,AB=3,BC=4,當(dāng)?ABCD的面積最大時(shí),下列結(jié)論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號(hào))18.已知是一元二次方程的一個(gè)根,則方程的另一個(gè)根是________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)張老師在黑板上布置了一道題:計(jì)算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時(shí)的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對(duì)?并說明理由.20.(6分)如圖,在Rt△ABC中,,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點(diǎn),則當(dāng)=______時(shí),四邊形BECD是正方形.21.(6分)如圖,拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4).(1)求這條拋物線的表達(dá)式;(2)P是拋物線對(duì)稱軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);(3)將拋物線沿y軸向下平移m個(gè)單位,所得新拋物線與y軸交于點(diǎn)D,過點(diǎn)D作DE∥x軸交新拋物線于點(diǎn)E,射線EO交新拋物線于點(diǎn)F,如果EO=2OF,求m的值.22.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長.23.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.24.(10分)未成年人思想道德建設(shè)越來越受到社會(huì)的關(guān)注,遼陽青少年研究所隨機(jī)調(diào)查了本市一中學(xué)100名學(xué)生寒假中花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.根據(jù)調(diào)查數(shù)據(jù)制成了頻分組頻數(shù)頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補(bǔ)全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調(diào)查的樣本容量是;(3)研究所認(rèn)為,應(yīng)對(duì)消費(fèi)150元以上的學(xué)生提出勤儉節(jié)約的建議.試估計(jì)應(yīng)對(duì)該校1000名學(xué)生中約多少名學(xué)生提出這項(xiàng)建議.25.(10分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使;(不寫作法,保留作圖痕跡)(2)連接AP當(dāng)為多少度時(shí),AP平分.26.(12分)旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且∠DAE=α.(1)如圖1,當(dāng)α=60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當(dāng)α=90°時(shí),猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;(3)如圖3,當(dāng)α=120°,BD=4,CE=5時(shí),請(qǐng)直接寫出DE的長為.27.(12分)如圖,在平面直角坐標(biāo)系中,直線y=kx+3與軸、軸分別相交于點(diǎn)A、B,并與拋物線的對(duì)稱軸交于點(diǎn),拋物線的頂點(diǎn)是點(diǎn).(1)求k和b的值;(2)點(diǎn)G是軸上一點(diǎn),且以點(diǎn)、C、為頂點(diǎn)的三角形與△相似,求點(diǎn)G的坐標(biāo);(3)在拋物線上是否存在點(diǎn)E:它關(guān)于直線AB的對(duì)稱點(diǎn)F恰好在y軸上.如果存在,直接寫出點(diǎn)E的坐標(biāo),如果不存在,試說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個(gè)三角形面積之和,為2×(|k|)=1.故選B.【點(diǎn)睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€(gè)知識(shí)點(diǎn);這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.2、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時(shí),三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時(shí),三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點(diǎn):1.解一元二次方程-因式分解法;2.三角形三邊關(guān)系;3.等腰三角形的性質(zhì).3、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項(xiàng)中的不等式.故選B.4、C【解析】【分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點(diǎn)睛】本題考查了列表法與樹狀圖法求概率,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、D【解析】根據(jù)“左加右減、上加下減”的原則,將拋物線向左平移1個(gè)單位所得直線解析式為:;再向下平移3個(gè)單位為:.故選D.6、C【解析】

根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個(gè)數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點(diǎn)睛】本題考查了平方根的定義.注意一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.7、D【解析】

欲求S1+S1,只要求出過A、B兩點(diǎn)向x軸、y軸作垂線段與坐標(biāo)軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點(diǎn)A、B是雙曲線y=上的點(diǎn),分別經(jīng)過A、B兩點(diǎn)向x軸、y軸作垂線段,

則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個(gè)矩形的面積都等于|k|=4,

∴S1+S1=4+4-1×1=2.

故選D.8、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.9、A【解析】

根據(jù)題意設(shè)未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設(shè)購買甲種獎(jiǎng)品x件,乙種獎(jiǎng)品y件.依題意,甲、乙兩種獎(jiǎng)品共20件,即x+y=20,購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,即40x+30y=650,綜上方程組為,故選A.【點(diǎn)睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.10、B【解析】分析:主視圖是從物體的正面看得到的圖形,分別寫出每個(gè)選項(xiàng)中的主視圖,即可得到答案.詳解:A、主視圖是等腰梯形,故此選項(xiàng)錯(cuò)誤;B、主視圖是長方形,故此選項(xiàng)正確;C、主視圖是等腰梯形,故此選項(xiàng)錯(cuò)誤;D、主視圖是三角形,故此選項(xiàng)錯(cuò)誤;故選B.點(diǎn)睛:此題主要考查了簡單幾何體的主視圖,關(guān)鍵是掌握主視圖所看的位置.11、B【解析】

由數(shù)軸上的點(diǎn)A、B分別與實(shí)數(shù)﹣1,1對(duì)應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點(diǎn)C對(duì)應(yīng)的實(shí)數(shù).【詳解】∵數(shù)軸上的點(diǎn)A,B分別與實(shí)數(shù)﹣1,1對(duì)應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點(diǎn)C對(duì)應(yīng)的實(shí)數(shù)是:1+2=3.故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,熟記實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系是解決本題的關(guān)鍵.12、B【解析】

根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點(diǎn)睛】本題考查了關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo),利用關(guān)于y軸對(duì)稱的點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)得出a,b是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1:3:5【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點(diǎn)睛:本題考查了平行線的性質(zhì)及相似三角形的性質(zhì).相似三角形的面積比等于相似比的平方.14、1【解析】

由折疊可得∠3=180°﹣2∠2,進(jìn)而可得∠3的度數(shù),然后再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可得∠1+∠3=180°,進(jìn)而可得∠1的度數(shù).【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.15、1【解析】

因?yàn)槭钦麛?shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),

∴是整數(shù),即1n是完全平方數(shù);

∴n的最小正整數(shù)值為1.

故答案為:1.【點(diǎn)睛】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負(fù)數(shù)進(jìn)行解答.16、直角三角形.【解析】

根據(jù)題意,畫出圖形,用垂直平分線的性質(zhì)解答.【詳解】點(diǎn)O落在AB邊上,連接CO,∵OD是AC的垂直平分線,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O(shè)為圓心,以AB為直徑的圓周上,∴∠C是直角.∴這個(gè)三角形是直角三角形.【點(diǎn)睛】本題考查線段垂直平分線的性質(zhì),解題關(guān)鍵是準(zhǔn)確畫出圖形,進(jìn)行推理證明.17、①②④【解析】

由當(dāng)?ABCD的面積最大時(shí),AB⊥BC,可判定?ABCD是矩形,由矩形的性質(zhì),可得②④正確,③錯(cuò)誤,又由勾股定理求得AC=1.【詳解】∵當(dāng)?ABCD的面積最大時(shí),AB⊥BC,∴?ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③錯(cuò)誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點(diǎn)睛】此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)以及勾股定理.注意證得?ABCD是矩形是解此題的關(guān)鍵.18、【解析】

通過觀察原方程可知,常數(shù)項(xiàng)是一未知數(shù),而一次項(xiàng)系數(shù)為常數(shù),因此可用兩根之和公式進(jìn)行計(jì)算,將2-代入計(jì)算即可.【詳解】設(shè)方程的另一根為x1,又∵x=2-,由根與系數(shù)關(guān)系,得x1+2-=4,解得x1=2+.故答案為:【點(diǎn)睛】解決此類題目時(shí)要認(rèn)真審題,確定好各系數(shù)的數(shù)值與正負(fù),然后適當(dāng)選擇一個(gè)根與系數(shù)的關(guān)系式求解.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、小亮說的對(duì),理由見解析【解析】

先根據(jù)完全平方公式和去括號(hào)法則計(jì)算,再合并同類項(xiàng),最后代入計(jì)算即可求解.【詳解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,當(dāng)x=時(shí),原式=+7=7;當(dāng)x=﹣時(shí),原式=+7=7.故小亮說的對(duì).【點(diǎn)睛】本題考查完全平方公式和去括號(hào),解題的關(guān)鍵是明確完全平方公式和去括號(hào)的計(jì)算方法.20、(1)詳見解析;(2)菱形;(3)當(dāng)∠A=45°,四邊形BECD是正方形.【解析】

(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵M(jìn)N//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點(diǎn),∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點(diǎn),∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點(diǎn),則當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),菱形的判定、正方形的判定,直角三角形斜邊中線的性質(zhì)等,綜合性較強(qiáng),熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.21、(1);(2)P(1,);(3)3或5.【解析】

(1)將點(diǎn)A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對(duì)稱軸為直線x=1,過點(diǎn)P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標(biāo).(3)新拋物線的表達(dá)式為,由題意可得DE=2,過點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點(diǎn)D在y軸的正半軸上和在y軸的負(fù)半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4)∴,解得,∴拋物線解析式為,(2),∴對(duì)稱軸為直線x=1,過點(diǎn)P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設(shè)新拋物線的表達(dá)式為則,,DE=2過點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點(diǎn)D在y軸的正半軸上,則,∴,∴,∴m=3,點(diǎn)D在y軸的負(fù)半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點(diǎn)睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學(xué)會(huì)靈活運(yùn)用是關(guān)鍵.22、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.23、(1)證明見解析;(2)【解析】試題分析:(1)首先連接OD,CD,由以BC為直徑的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)首先根據(jù)三角函數(shù)的性質(zhì),求得BD,DE,AE的長,然后求得△BOD,△ODE,△ADE以及△ABC的面積,繼而求得答案.試題解析:(1)證明:連接OD,CD,∵BC為⊙O直徑,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D點(diǎn)在⊙O上,∴DE為⊙O的切線;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC?cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB?CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD?cos30°=3,∴S△ODE=OD?DE=×2×=,S△ADE=AE?DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.24、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】

(1)由頻數(shù)直方圖知組距是50,分組數(shù)列中依次填寫100.5,150.5;0.5-50.5的頻數(shù)=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數(shù)=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調(diào)查的樣本容量是100;(3)先求得消費(fèi)在150元以上的學(xué)生的頻率,繼而可求得應(yīng)對(duì)該校1000學(xué)生中約多少名學(xué)生提出該項(xiàng)建議..【詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項(xiàng)建議的人數(shù)人.【點(diǎn)睛】本題考查了頻數(shù)分布表,樣本估計(jì)總體、樣本容量等知識(shí).注意頻數(shù)分布表中總的頻率之和是1.25、(1)詳見解析;(2)30°.【解析】

(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點(diǎn)E、F,作直線EF,交BC于點(diǎn)P,∵EF為AB的垂直平分線,∴PA=PB,∴點(diǎn)P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當(dāng)時(shí),AP平分.【點(diǎn)睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點(diǎn)到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.26、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】

(1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=∠CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結(jié)論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結(jié)論.【詳解】解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉(zhuǎn)知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論