版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省大名一中2025屆高一下數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,則()A. B. C. D.2.直線的傾斜角是()A. B. C. D.3.已知的三邊滿足,則的內(nèi)角C為()A. B. C. D.4.已知,,則()A.1 B.2 C. D.35.已知數(shù)列滿足,且是函數(shù)的兩個(gè)零點(diǎn),則等于()A.24 B.32 C.48 D.646.若向量=,||=2,若·(-)=2,則向量與的夾角()A. B. C. D.7.若兩個(gè)球的半徑之比為,則這兩球的體積之比為()A. B. C. D.8.已知向量,滿足且,若向量在向量方向上的投影為,則()A. B. C. D.9.某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間具有線性相關(guān)關(guān)系,根據(jù)下表數(shù)據(jù)(單位:百萬(wàn)元),由最小二乘法求得回歸直線方程為.現(xiàn)發(fā)現(xiàn)表中有個(gè)數(shù)據(jù)看不清,請(qǐng)你推斷該數(shù)據(jù)值為()345582834★5672A.65 B.60 C.55 D.5010.若,則的最小值為()A. B. C.3 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是______.12.已知正方體的棱長(zhǎng)為,點(diǎn)、分別為、的中點(diǎn),則點(diǎn)到平面的距離為_(kāi)_____.13.若直線:與直線的交點(diǎn)位于第一象限,則直線的傾斜角的取值范圍是___________.14.如圖,在圓心角為,半徑為2的扇形AOB中任取一點(diǎn)P,則的概率為_(kāi)_______.15.已知無(wú)窮等比數(shù)列的首項(xiàng)為,公比為q,且,則首項(xiàng)的取值范圍是________.16.已知,則的值是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在三棱柱中,平面平面,,,為棱的中點(diǎn).(1)證明:;(2)求點(diǎn)到平面的距離.18.如圖1,已知菱形的對(duì)角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.19.如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn)分別為AC,BP中點(diǎn).(1)求證:EF∥平面PCD;(2)求直線DP與平面ABCD所成角的正弦值.20.設(shè)函數(shù)f(x)=x(1)當(dāng)a=2時(shí),函數(shù)f(x)的圖像經(jīng)過(guò)點(diǎn)(1,a+1),試求m的值,并寫(xiě)出(不必證明)f(x)的單調(diào)遞減區(qū)間;(2)設(shè)a=-1,h(x)+x?f(x)=0,g(x)=2cos(x-π3),若對(duì)于任意的s∈[1,2],總存在t∈[0,π]21.已知數(shù)列中,,.(1)證明數(shù)列為等比數(shù)列,并求的通項(xiàng)公式;(2)數(shù)列滿足,數(shù)列的前項(xiàng)和為,求證.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由,代入運(yùn)算即可得解.【詳解】解:因?yàn)?,,所?故選:A.【點(diǎn)睛】本題考查了兩角差的正切公式,屬基礎(chǔ)題.2、B【解析】
先求斜率,即傾斜角的正切值,易得.【詳解】,可知,即,故選B【點(diǎn)睛】一般直線方程求傾斜角將直線轉(zhuǎn)換為斜截式直線方程易得斜率,然后再根據(jù)直線的斜率等于傾斜角的正切值易得傾斜角,屬于簡(jiǎn)單題目.3、C【解析】原式可化為,又,則C=,故選C.4、A【解析】
根據(jù)向量的坐標(biāo)運(yùn)算法則直接求解.【詳解】因?yàn)?,所以,所以,故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.5、D【解析】試題分析:依題意可知,,,,所以.即,故,,,.,所以,又可知.,故.考點(diǎn):函數(shù)的零點(diǎn)、數(shù)列的遞推公式6、A【解析】
根據(jù)向量的數(shù)量積運(yùn)算,向量的夾角公式可以求得.【詳解】由已知可得:,得,設(shè)向量與的夾角為,則所以向量與的夾角為故選A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和夾角公式,屬于基礎(chǔ)題.7、C【解析】
根據(jù)球的體積公式可知兩球體積比為,進(jìn)而得到結(jié)果.【詳解】由球的體積公式知:兩球的體積之比故選:【點(diǎn)睛】本題考查球的體積公式的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】由,即,所以,由向量在向量方向上的投影為,則,即,所以,故選A.9、B【解析】
求出樣本中心點(diǎn)的坐標(biāo),代入線性回歸方程求解.【詳解】設(shè)表中看不清的數(shù)據(jù)為,則,,代入,得,解得.故選:.【點(diǎn)睛】本題考查線性回歸方程,明確線性回歸方程恒過(guò)樣本點(diǎn)的中心是關(guān)鍵,是基礎(chǔ)題.10、A【解析】
由題意知,,,再由,進(jìn)而利用基本不等式求最小值即可.【詳解】由題意,,因?yàn)椋?,,所以,?dāng)且僅當(dāng),即時(shí),取等號(hào).故選:A.【點(diǎn)睛】本題考查利用基本不等式求最值,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將函數(shù)化為的形式,再計(jì)算值域?!驹斀狻恳?yàn)樗浴军c(diǎn)睛】本題考查三角函數(shù)的值域,屬于基礎(chǔ)題。12、【解析】
作出圖形,取的中點(diǎn),連接,證明平面,可知點(diǎn)平面的距離等于點(diǎn)到平面的距離,然后利用等體積法計(jì)算出點(diǎn)到平面的距離,即為所求.【詳解】如下圖所示,取的中點(diǎn),連接,在正方體中,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點(diǎn)平面的距離等于點(diǎn)到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設(shè)點(diǎn)到平面的距離為,則,.故答案為:.【點(diǎn)睛】本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.13、【解析】若直線與直線的交點(diǎn)位于第一象限,如圖所示:則兩直線的交點(diǎn)應(yīng)在線段上(不包含點(diǎn)),當(dāng)交點(diǎn)為時(shí),直線的傾斜角為,當(dāng)交點(diǎn)為時(shí),斜率,直線的傾斜角為∴直線的傾斜角的取值范圍是.故答案為14、【解析】
根據(jù)題意,建立坐標(biāo)系,求出圓心角扇形區(qū)域的面積,進(jìn)而設(shè),由數(shù)量積的計(jì)算公式可得滿足的區(qū)域,求出其面積,代入幾何概率的計(jì)算公式即可求解.【詳解】根據(jù)題意,建立如圖的坐標(biāo)系,則則扇形的面積為設(shè)若,則有,即;則滿足的區(qū)域?yàn)槿鐖D的陰影區(qū)域,直線與弧的交點(diǎn)為,易得的坐標(biāo)為,則陰影區(qū)域的面積為故的概率故答案為:【點(diǎn)睛】本題考查幾何概型,涉及數(shù)量積的計(jì)算,屬于綜合題.15、【解析】
根據(jù)極限存在得出,對(duì)分、和三種情況討論得出與之間的關(guān)系,可得出的取值范圍.【詳解】由于,則.①當(dāng)時(shí),則,;②當(dāng)時(shí),則,;③當(dāng)時(shí),,解得.綜上所述:首項(xiàng)的取值范圍是,故答案為:.【點(diǎn)睛】本題考查極限的應(yīng)用,要結(jié)合極限的定義得出公比的取值范圍,同時(shí)要對(duì)公比的取值范圍進(jìn)行分類討論,考查分類討論思想的應(yīng)用,屬于中等題.16、【解析】
根據(jù)兩角差的正切公式即可求解【詳解】故答案為:【點(diǎn)睛】本題考查兩角差的正切公式的用法,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)作為棱的中點(diǎn),連結(jié),,通過(guò)證明平面可得.(2)根據(jù)等體積法:可求得.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點(diǎn),連結(jié),,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分別為,的中點(diǎn),∴,∴.又,∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點(diǎn),∴.又∵平面平面,且平面平面,平面,∴平面.∴.設(shè)點(diǎn)到平面,的距離.在中,,,則.又∵,∴,則.【點(diǎn)睛】本題考查了直線與平面垂直的判定與性質(zhì),考查了等體積法求點(diǎn)面距,屬于中檔題.18、(Ⅰ)見(jiàn)證明;(Ⅱ)【解析】
(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說(shuō)明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理運(yùn)算得到,又由(Ⅰ)的結(jié)論得到,可得平面,再利用等體積轉(zhuǎn)化有,計(jì)算結(jié)果.【詳解】(Ⅰ)折疊前,因?yàn)樗倪呅螢榱庑?,所以;所以折疊后,,,又,平面,所以平面因?yàn)樗倪呅螢榱庑?,所以.又點(diǎn)為線段的中點(diǎn),所以.所以四邊形為平行四邊形.所以.又平面,所以平面.因?yàn)槠矫妫云矫嫫矫妫á颍﹫D1中,由已知得,,所以圖2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱錐的體積為.【點(diǎn)睛】本題考查線面垂直、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查了三棱錐體積的求法,運(yùn)用了轉(zhuǎn)化思想,是中檔題.19、(1)見(jiàn)證明;(2)【解析】
(1)根據(jù)EF是△BDP的中位線可知EF∥DP,即可利用線線平行得出線面平行;(2)取AB中點(diǎn)O,連接PO,DO,可證明∠PDO為DP與平面ABCD所成角,在Rt△DOP中求解即可.【詳解】(1)因?yàn)镋為AC中點(diǎn),所以DB與AC交于點(diǎn)E.因?yàn)镋,F(xiàn)分別為AC,BP中點(diǎn),所以EF是△BDP的中位線,所以EF∥DP.又DP?平面PCD,EF?平面PCD,所以EF∥平面PCD.(2)取AB中點(diǎn)O,連接PO,DO∵△PAB為正三角形,∴PO⊥AB,又∵平面ABCD⊥平面PAB∴PO⊥平面ABCD,∴DP在平面ABCD內(nèi)的射影為DO,∠PDO為DP與平面ABCD所成角,在Rt△DOP中,sin∠PDO=,∴直線DP與平面ABCD所成角的正弦值為【點(diǎn)睛】本題主要考查了線面平行的證明,線面角的求法,屬于中檔題.20、(1)遞減區(qū)間為[-2,0)和(0,2【解析】
(1)將點(diǎn)(1,3)代入函數(shù)f(x)即可求出m,根據(jù)函數(shù)的解析式寫(xiě)出單調(diào)遞減區(qū)間即可(2)當(dāng)a=-1時(shí),寫(xiě)出函數(shù)h(x),由題意知h(s)的值域是g(t)值域的子集,即可求出.【詳解】(1)因?yàn)楹瘮?shù)f(x)的圖像經(jīng)過(guò)點(diǎn)(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴????∴f(x)的單調(diào)遞減區(qū)間為[-2,0)(2)當(dāng)a=-1時(shí),f(x)=x-1∴???∵g(x)=2cos∴??t∈[0,π]時(shí),g(t)∈[-1,2]由對(duì)于任意的s∈[1,2],總存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因?yàn)閔(x)=-x2-mx+1①當(dāng)-m2≤1只需滿足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②當(dāng)1<-m2<2因?yàn)閔(1)=-m>2,與h(s)?[-1,2]矛盾,故舍去.③當(dāng)-m2≥2h(1)=-m≥4與h(s)?[-1,2]矛盾,故舍去.綜上,m∈[-2,-1].【點(diǎn)睛】本題主要考查了函數(shù)的單調(diào)性,以及含參數(shù)二次函數(shù)值域的求法,涉及存在性問(wèn)題,轉(zhuǎn)化思想和分類討論思想要求較高,屬于難題.21、(1)證明見(jiàn)解析;;(2)【解析】
(1)先證明數(shù)列是以3為公比,以為首項(xiàng)的等比數(shù)列,從而,由此
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚雙方的共同債權(quán)債務(wù)處理合同
- 2024苗木種植與園林苗木種植基地規(guī)劃與建設(shè)勞務(wù)分包協(xié)議3篇
- 2024版活動(dòng)場(chǎng)地使用合同范本
- 2025年度生態(tài)農(nóng)業(yè)園承包合同格式規(guī)范4篇
- 2024鎳礦國(guó)際貿(mào)易法律事務(wù)咨詢服務(wù)合同3篇
- 2025年度新能源車(chē)輛代理記賬與補(bǔ)貼申請(qǐng)合同4篇
- 2025年度文化產(chǎn)業(yè)發(fā)展總經(jīng)理聘用協(xié)議3篇
- 《蒸汽鍋爐維護(hù)與管理》課件
- 2025年度個(gè)人二手房交易反擔(dān)保合同規(guī)范4篇
- 2025年度博物館展覽館日常保潔與文物保護(hù)合同4篇
- 2025年度影視制作公司兼職制片人聘用合同3篇
- 兒童糖尿病的飲食
- 2025屆高考語(yǔ)文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 干細(xì)胞項(xiàng)目商業(yè)計(jì)劃書(shū)
- 拉薩市2025屆高三第一次聯(lián)考(一模)語(yǔ)文試卷(含答案解析)
- 浙江省嘉興市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末試題含解析
- 2024年高考新課標(biāo)Ⅱ卷語(yǔ)文試題講評(píng)課件
- 無(wú)人機(jī)航拍技術(shù)教案(完整版)
- 人教PEP版(2024)三年級(jí)上冊(cè)英語(yǔ)Unit 4《Plants around us》單元作業(yè)設(shè)計(jì)
- 《保密法》培訓(xùn)課件
- 醫(yī)院項(xiàng)目竣工驗(yàn)收和工程收尾階段的管理措施專項(xiàng)方案
評(píng)論
0/150
提交評(píng)論