![江西省新余市第六中學2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view3/M03/23/1B/wKhkFmZyL-mAZ6kLAAGmoCxVtnI380.jpg)
![江西省新余市第六中學2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view3/M03/23/1B/wKhkFmZyL-mAZ6kLAAGmoCxVtnI3802.jpg)
![江西省新余市第六中學2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view3/M03/23/1B/wKhkFmZyL-mAZ6kLAAGmoCxVtnI3803.jpg)
![江西省新余市第六中學2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view3/M03/23/1B/wKhkFmZyL-mAZ6kLAAGmoCxVtnI3804.jpg)
![江西省新余市第六中學2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view3/M03/23/1B/wKhkFmZyL-mAZ6kLAAGmoCxVtnI3805.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省新余市第六中學2025屆高一下數(shù)學期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知過原點的直線與圓C:相交于不同的兩點,且線段的中點坐標為,則弦長為()A.2 B.3 C.4 D.52.某幾何體三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.已知,則的最小值為()A.2 B.0 C.-2 D.-44.已知向量,,,則()A. B. C. D.5.已知等差數(shù)列:1,a1,a2,9;等比數(shù)列:-9,b1,b2,b3,-1.則b2(a2-a1)的值為()A.8 B.-8C.±8 D.86.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.7.設m,n是兩條不同的直線,α?A.若m⊥β,n⊥β?,?n⊥α,則m⊥αC.若m⊥n,?n∥α,則m⊥α D.若m⊥n8.《九章算術》中,將四個面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.9.在中,已知三個內(nèi)角為,,滿足,則().A. B.C. D.10.若正實數(shù)滿足,則的最小值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前項和為,且,,則;12.已知線段上有個確定的點(包括端點與).現(xiàn)對這些點進行往返標數(shù)(從…進行標數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點上標,稱為點,然后從點開始數(shù)到第二個數(shù),標上,稱為點,再從點開始數(shù)到第三個數(shù),標上,稱為點(標上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標記到點上,則點上的所有標記的數(shù)中,最小的是_______.13.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.14.已知數(shù)列的前項和是,且,則______.(寫出兩個即可)15.已知向量、滿足||=2,且與的夾角等于,則||的最大值為_____.16.等差數(shù)列中,,則其前12項之和的值為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,滿足,,.(1)求向量,所成的角的大小;(2)若,求實數(shù)的值.18.已知為平面內(nèi)不共線的三點,表示的面積(1)若求;(2)若,,,證明:;(3)若,,,其中,且坐標原點恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.19.為了了解某省各景區(qū)在大眾中的熟知度,隨機從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個國家級旅游景區(qū)?”,統(tǒng)計結果如下表所示:組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);(3)在(2)中抽取的人中隨機抽取人,求所抽取的人中恰好沒有年齡段在的概率20.在等差數(shù)列中,已知,.(I)求數(shù)列的通項公式;(II)求.21.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)請確定3998是否是數(shù)列中的項?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)兩直線垂直,斜率相乘等于-1,求得直線的斜率為,進而求出圓心到直線的距離,再代入弦長公式求得弦長值.【詳解】圓的標準方程為:,設圓心,,,,,直線的方程為:,到直線的距離,.【點睛】求直線與圓相交的弦長問題,核心是利用點到直線的距離公式,求圓心到直線的距離.2、B【解析】試題分析:該幾何體是正方體在兩個角各挖去四分之一個圓柱,因此.故選B.考點:三視圖,體積.3、D【解析】
根據(jù)不等式組畫出可行域,借助圖像得到最值.【詳解】根據(jù)不等式組畫出可行域得到圖像:將目標函數(shù)化為,根據(jù)圖像得到當目標函數(shù)過點時取得最小值,代入此點得到z=-4.故答案為:D.【點睛】利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內(nèi)作出可行域;(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型);(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結合可行域確定最優(yōu)解;(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值。4、D【解析】
利用平面向量垂直的坐標等價條件列等式求出實數(shù)的值.【詳解】,,,,解得,故選D.【點睛】本題考查向量垂直的坐標表示,解題時將向量垂直轉化為兩向量的數(shù)量積為零來處理,考查計算能力,屬于基礎題.5、B【解析】a2-a1=d=9-13又b22=b1b因為b2與-9,-1同號,所以b2=-3.所以b2(a2-a1)=-3×8本題選擇B選項.6、A【解析】
根據(jù)等比中項定義可得;利用和表示出等式,可構造方程求得;利用等差數(shù)列求和公式求得結果.【詳解】由題意得:設等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應用;關鍵是能夠構造方程求出公差,屬于??碱}型.7、A【解析】
依據(jù)立體幾何有關定理及結論,逐個判斷即可?!驹斀狻緼正確:利用“垂直于同一個平面的兩條直線平行”及“兩條直線有一條垂直于一個平面,則另一條也垂直于該平面”,若m⊥β且n⊥β?,則m//n,又n⊥α,所以m⊥αB錯誤:若m∥β,?,?β⊥α,則C錯誤:若m⊥n,?n∥α,則m可能垂直于平面α,也可能平行于平面α,還可能在平面D錯誤:若m⊥n?,?n⊥β?,?β⊥α,則【點睛】本題主要考查立體幾何中的定理和結論,意在考查學生幾何定理掌握熟練程度。8、C【解析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因為為直角三角形,經(jīng)分析只能,故,三棱錐的外接球的圓心為PC的中點,所以則球的表面積為.故選C.9、C【解析】
利用正弦定理、余弦定理即可得出.【詳解】由正弦定理,以及,得,不妨取,則,又,.故選:C.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中應用,考查了轉化思想,屬于基礎題.10、D【解析】
將變成,可得,展開后利用基本不等式求解即可.【詳解】,,,,當且僅當,取等號,故選D.【點睛】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因為在等差數(shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.12、【解析】
將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,則,令,即可得.【詳解】依照題意知,標有2的是1+2,標有3的是1+2+3,……,標有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,,令,,解得,故點上的所有標記的數(shù)中,最小的是3.【點睛】本題主要考查利用合情推理,分析解決問題的能力.意在考查學生的邏輯推理能力,13、10【解析】
根據(jù)等差數(shù)列的性質,可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.14、或【解析】
利用已知求的公式,即可算出結果.【詳解】(1)當,得,∴,∴.(2)當時,,兩式作差得,,化簡得,∴或,即(常數(shù))或,當(常數(shù))時,數(shù)列是以1為首項,2為公差的等差數(shù)列,所以;當時,數(shù)列是以1為首項,﹣1為公比的等比數(shù)列,所以.【點睛】本題主要考查利用與的關系公式,即,求的方法應用.15、【解析】
在中,令,可得,可得點在半徑為的圓上,,可得,進而可得的最大值.【詳解】∵向量、滿足||=1,且與的夾角等于,如圖在中,令,,可得可得點B在半徑為R的圓上,1R4,R=1.則||的最大值為1R=4【點睛】本題考查了向量的夾角、模的運算,屬于中檔題.16、【解析】
利用等差數(shù)列的通項公式、前n項和公式直接求解.【詳解】∵等差數(shù)列{an}中,a3+a10=25,∴其前12項之和S126(a3+a10)=6×25=1.故答案為:1.【點睛】本題考查等差數(shù)列的前n項和的公式,考查等差數(shù)列的性質的應用,考查運算求解能力,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)化簡即得向量,所成的角的大?。唬?)由,可得,化簡即得解.【詳解】解:(1)由,可得.即,因為,所以,又因為,,代入上式,可得,即.(2)由,可得.即,則,得.【點睛】本題主要考查數(shù)量積的運算和向量的模的運算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.18、(1);(2)詳見解析;(3)是定值,值為,理由見解析.【解析】
(1)已知三點坐標,則可以求出三邊長度及對應向量,由向量數(shù)量積公式可以求出夾角余弦值,從而算出正弦值,利用面積公式完成作答;(2)和(1)的方法一樣,唯獨不同在于(1)是具體值,而(2)中是參數(shù),我們可以把參數(shù)當做整體(視為已知)能處理;(3)由恰好為的正心可以獲取,而可以借助(2)的公式直接運用,本題也就完成作答.【詳解】(1)因為,所以,,所以因為,所以,所以(2)因為,所以所以因為所以所以所以;(3)因為為的重心,所以由(1)可知又因為為的重心,所以,平方相加得:,即,所以所以,所以是定值,值為【點睛】已知三角形三點,去探究三角形面積問題,通過向量數(shù)量積為載體,算出相對應邊所在向量的模長、夾角余弦值,進一步算出正弦值,從而算出面積,這三問存在層層遞進的過程,從特殊到一般慢慢設問,非常好的一個探究性習題.19、(1),,,;(2)分邊抽取2,3,1人;(3).【解析】
(1)根據(jù)數(shù)據(jù)表和頻率分布直方圖可計算得到第組的人數(shù)和頻率,從而可得總人數(shù);根據(jù)總數(shù)、頻率和頻數(shù)的關系,可分別計算得到所求結果;(2)首先確定第組的總人數(shù),根據(jù)分層抽樣原則計算即可得到結果;(3)首先計算得到基本事件總數(shù);再計算出恰好沒有年齡段在包含的基本事件個數(shù),根據(jù)古典概型概率公式可求得結果.【詳解】(1)第組的人數(shù)為:人,第組的頻率為:第一組的頻率為第一組的人數(shù)為:第二組的頻率為第二組的人數(shù)為:第三組的頻率為第三組的人數(shù)為:第五組的頻率為第五組的人數(shù)為:(2)第組的總人數(shù)為:人第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人(3)在(2)中抽取的人中隨機抽取人,基本事件總數(shù)為:所抽取的人中恰好沒有年齡段在包含的基本事件個數(shù)為:所抽取的人中恰好沒有年齡段在的概率:【點睛】本題考查利用頻率分布直方圖計算總數(shù)、頻數(shù)和頻率、分層抽樣基本方法的應用、古典概型計算概率問題;關鍵是熟練掌握頻率分布直方圖的相關知識,能夠通過頻率分布直方圖準確計算出各組數(shù)據(jù)對應的頻率.20、(Ⅰ)(Ⅱ)【解析】
(I)將已知條件轉為關于首項和公差的方程組,解方程組求出,進而可求通項公式;(II)由已知可得構成首項為,公差為的等差數(shù)列,利用等差數(shù)列前n項和公式計算即可.【詳解】(I)因為是等差數(shù)列,,所以解得.則,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合伙企業(yè)策劃干股加入?yún)f(xié)議書格式
- 2025年典范個人土地交易合同模板
- 2025年雙方自愿離婚協(xié)議書模板(兩個孩子)
- 2025年化工公司員工合同書
- 2025年企業(yè)園區(qū)租賃合同策劃樣本
- 2025年甲方與協(xié)作單位合同范文
- 2025年辦公設備維修保養(yǎng)服務合同范本
- 2025年土地使用權出讓合同樣本
- 2025年招投標流程中合同風險防范與控制實踐
- 2025年供應鏈協(xié)作協(xié)議樣本
- 包裝材料及紙制品生產(chǎn)建設項目可行性實施報告
- 財務收支月報表excel模板
- 國標充電協(xié)議報文整理
- 水餃類產(chǎn)品質量檢驗作業(yè)指導書
- 電力變壓器計算單
- 紅外測溫培訓
- 新型城市化建設中城鄉(xiāng)結合部存在的問題及解決方案
- 質性研究(陳向明)PPT精選文檔
- 市政小三線施工方案(共22頁)
- 靜壓樁機、鉆孔灌注樁、沉槽機CAD圖形
- 野外土名描述實例
評論
0/150
提交評論