版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省沂水縣高一下數(shù)學期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.利用隨機模擬方法可估計無理數(shù)π的數(shù)值,為此設計右圖所示的程序框圖,其中rand()表示產生區(qū)間(0,1)上的隨機數(shù),P是s與n的比值,執(zhí)行此程序框圖,輸出結果P的值趨近于()A.π B.π4 C.π22.已知直線經過兩點,則的斜率為()A. B. C. D.3.某學校有教師200人,男學生1200人,女學生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,若女學生一共抽取了80人,則n的值為()A.193 B.192 C.191 D.1904.若,則下列不等式恒成立的是A. B. C. D.5.在中,角A、B、C的對邊分別為a、b、c,若,則角()A. B. C. D.6.在等比數(shù)列中,則()A.81 B. C. D.2437.在中,角,,所對的邊分別為,,,若,,,則()A. B. C. D.8.同時擲兩枚骰子,所得點數(shù)之和為5的概率為()A. B. C. D.9.設,為兩個平面,則能斷定∥的條件是()A.內有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面10.連續(xù)拋擲一枚質地均勻的硬幣10次,若前4次出現(xiàn)正面朝上,則第5次出現(xiàn)正面朝上的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,是第三象限角,則.12.設等差數(shù)列的前項和為,則______.13.已知兩點,則線段的垂直平分線的方程為_________.14.已知等比數(shù)列的公比為,它的前項積為,且滿足,,,給出以下四個命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________15.已知等差數(shù)列的前項和為,若,則_______.16.設為數(shù)列的前項和,則__三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內接矩形CDEF.(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設;(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設;試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?18.已知數(shù)列的各項均為正數(shù),對任意,它的前項和滿足,并且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,為數(shù)列的前項和,求.19.已知向量,其中.函數(shù)的圖象過點,點與其相鄰的最高點的距離為1.(Ⅰ)求函數(shù)的單調遞減區(qū)間;(Ⅱ)計算的值;(Ⅲ)設函數(shù),試討論函數(shù)在區(qū)間[0,3]上的零點個數(shù).20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求在區(qū)間上的最大值和最小值.21.假設關于某設備的使用年限x和支出的維修費y(萬元)有如下表的統(tǒng)計資料(1)畫出數(shù)據(jù)的散點圖,并判斷y與x是否呈線性相關關系(2)若y與x呈線性相關關系,求線性回歸方程的回歸系數(shù),(3)估計使用年限為10年時,維修費用是多少?參考公式及相關數(shù)據(jù):
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)程序框圖可知由幾何概型計算出x,y任?。?,1)上的數(shù)時落在x2【詳解】解:根據(jù)程序框圖可知P為頻率,它趨近于在邊長為1的正方形中隨機取一點落在扇形內的的概率π×故選:B【點睛】本題考查的知識點是程序框圖,根據(jù)已知中的程序框圖分析出程序的功能,并將問題轉化為幾何概型問題是解答本題的關鍵,屬于基礎題.2、A【解析】
直接代入兩點的斜率公式,計算即可得出答案。【詳解】故選A【點睛】本題考查兩點的斜率公式,屬于基礎題。3、B【解析】
按分層抽樣的定義,按比例計算.【詳解】由題意,解得.故選:B.【點睛】本題考查分層抽樣,屬于簡單題.4、D【解析】∵∴設代入可知均不正確對于,根據(jù)冪函數(shù)的性質即可判斷正確故選D5、C【解析】
利用余弦定理求三角形的一個內角的余弦值,可得的值,得到答案.【詳解】在中,因為,即,利用余弦定理可得,又由,所以,故選C.【點睛】本題主要考查了余弦定理的應用,其中解答中根據(jù)題設條件,合理利用余弦定理求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、A【解析】解:因為等比數(shù)列中,則,選A7、C【解析】
在中,利用正弦定理求出即可.【詳解】在中,角,,所對的邊分別為,,,已知:,,,利用正弦定理:,解得:.故選C.【點睛】本題考查了正弦定理的應用及相關的運算問題,屬于基礎題.8、C【解析】
求出基本事件空間,找到符合條件的基本事件,可求概率.【詳解】同時擲兩枚骰子,所有可能出現(xiàn)的結果有:共有36種,點數(shù)之和為5的基本事件有:共4種;所以所求概率為.故選C.【點睛】本題主要考查古典概率的求解,側重考查數(shù)學建模的核心素養(yǎng).9、C【解析】
對四個選項逐個分析,可得出答案.【詳解】對于選項A,當,相交于直線時,內有無數(shù)條直線與平行,即A錯誤;對于選項B,當,相交于直線時,存在直線滿足:既與平行又不在兩平面內,該直線平行于,,故B錯誤;對于選項C,設直線AB垂直于,平面,垂足分別為A,B,假設與不平行,設其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學生的空間想象能力,屬于中檔題.10、D【解析】
拋擲一枚質地均勻的硬幣有兩種情況,正面朝上和反面朝上的概率都是,與拋擲次數(shù)無關.【詳解】解:拋擲一枚質地均勻的硬幣,有正面朝上和反面朝上兩種可能,概率均為,與拋擲次數(shù)無關.故選:D.【點睛】本題考查了概率的求法,考查了等可能事件及等可能事件的概率知識,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】試題分析:根據(jù)同角三角函數(shù)的基本關系知,,化簡整理得①,又因為②,聯(lián)立方程①②即可解得:,,又因為是第三象限角,所以,故.考點:同角三角函數(shù)的基本關系.12、【解析】
設等差數(shù)列的公差為,由,可求出的值,結合,可以求出的值,利用等差數(shù)列的通項公式,可得,再利用,可以求出的值.【詳解】設等差數(shù)列的公差為,因為,所以,又因為,所以,而.【點睛】本題考查了等差數(shù)列的通項公式以及等差數(shù)列的前項和公式,考查了數(shù)學運算能力.13、【解析】
求出直線的斜率和線段的中點,利用兩直線垂直時斜率之積為可得出線段的垂直平分線的斜率,然后利用點斜式可寫出中垂線的方程.【詳解】線段的中點坐標為,直線的斜率為,所以,線段的垂直平分線的斜率為,其方程為,即.故答案為.【點睛】本題考查線段垂直平分線方程的求解,有如下兩種方法求解:(1)求出中垂線的斜率和線段的中點,利用點斜式得出中垂線所在直線方程;(2)設動點坐標為,利用動點到線段兩端點的距離相等列式求出動點的軌跡方程,即可作為中垂線所在直線的方程.14、②③【解析】
利用等比數(shù)列的性質,可得,得出,進而判斷②③④,即可得到答案.【詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯誤的;②中,由等比數(shù)列的性質,可得,所以是正確的;③中,由,且,,所以前項之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【點睛】本題主要考查了等比數(shù)列的性質的應用,其中解答中熟記等比數(shù)列的性質,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.15、【解析】
先由題意,得到,求出,再由等差數(shù)列的性質,即可得出結果.【詳解】因為等差數(shù)列的前項和為,若,則,所以,因此.故答案為:【點睛】本題主要考查等差數(shù)列的性質的應用,熟記等差數(shù)列的求和公式,以及等差數(shù)列的性質即可,屬于常考題型.16、【解析】
當時,;當時,,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因為,,所以,同理可得,,,所以,應選答案.點睛:本題運用演繹推理的思維方法,分別探求出數(shù)列各項的規(guī)律(成等比數(shù)列),再運用等比數(shù)列的求和公式,使得問題簡捷、巧妙獲解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、方式一最大值【解析】
試題分析:(1)運用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當選擇公式進行變形;(3)把形如化為,可進一步研究函數(shù)的周期、單調性、最值和對稱性.試題解析:解(1)在中,設,則又當即時,(Ⅱ)令與的交點為,的交點為,則,于是,又當即時,取得最大值.,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:考點:把實際問題轉化為三角函數(shù)求最值問題.18、(1),(2)【解析】
(1)根據(jù)與的關系,利用臨差法得到,知公差為3;再由代入遞推關系求;(2)觀察數(shù)列的通項公式,相鄰兩項的和有規(guī)律,故采用并項求和法,求其前項和.【詳解】(1)對任意,有,①當時,有,解得或.當時,有.②①-②并整理得.而數(shù)列的各項均為正數(shù),.當時,,此時成立;當時,,此時,不成立,舍去.,.(2).【點睛】已知與的遞推關系,利用臨差法求時,要注意對下標與分兩種情況,即;數(shù)列求和時要先觀察通項特點,再決定采用什么方法.19、(Ⅰ),;(Ⅱ)2028;(Ⅲ)詳見解析.【解析】
(Ⅰ)由數(shù)量積的坐標運算可得f(x),由題意求得ω,再由函數(shù)f(x)的圖象過點B(2,2)列式求得.則函數(shù)解析式可求,由復合函數(shù)的單調性求得f(x)的單調遞增區(qū)間;(Ⅱ)由(Ⅰ)知,f(x)=2+sin,可得f(x)是周期為2的周期函數(shù),且f(2)=2,f(2)=2,f(3)=0,f(2)=2.得到f(2)+f(2)+f(3)+f(2)=2.進一步可得結論;(Ⅲ)g(x)=f(x)﹣m﹣2,函數(shù)g(x)在[0,3]上的零點個數(shù),即為函數(shù)y=sin的圖象與直線y=m在[0,3]上的交點個數(shù).數(shù)形結合得答案.【詳解】(Ⅰ)∵(,cos2(ωx+φ)),(,),∴f(x)cos2(ωx+)=2﹣cos2(ωx+)),∴f(x)max=2,則點B(2,2)為函數(shù)f(x)的圖象的一個最高點.∵點B與其相鄰的最高點的距離為2,∴,得ω.∵函數(shù)f(x)的圖象過點B(2,2),∴,即sin2φ=2.∵0<,∴.∴f(x)=2﹣cos2()=2+sin,由,得,.的單調遞減區(qū)間是,.(Ⅱ)由(Ⅰ)知,f(x)=2+sin,∴f(x)是周期為2的周期函數(shù),且f(2)=2,f(2)=2,f(3)=0,f(2)=2.∴f(2)+f(2)+f(3)+f(2)=2.而2027=2×502+2,∴f(2)+f(2)+…+f(2027)=2×502+2=2028;(Ⅲ)g(x)=f(x)﹣m﹣2,函數(shù)g(x)在[0,3]上的零點個數(shù),即為函數(shù)y=sin的圖象與直線y=m在[0,3]上的交點個數(shù).在同一直角坐標系內作出兩個函數(shù)的圖象如圖:①當m>2或m<﹣2時,兩函數(shù)的圖象在[0,3]內無公共點;②當﹣2≤m<0或m=2時,兩函數(shù)的圖象在[0,3]內有一個共點;③當0≤m<2時,兩函數(shù)的圖象在[0,3]內有兩個共點.綜上,當m>2或m<﹣2時,函數(shù)g(x)在[0,3]上無零點;②當﹣2≤m<0或m=2時,函數(shù)g(x)在[0,3]內有2個零點;③當0≤m<2時,函數(shù)g(x)在[0,3]內有2個零點.【點睛】本題考查三角函數(shù)中的恒等變換應用,考查數(shù)量積的坐標運算,體現(xiàn)了數(shù)形結合的解題思想方法,是中檔題.20、(1);(2),.【解析】
(1)利用二倍角余弦、正弦公式以及輔助角公式將函數(shù)的解析式化簡,然后利用周期公式可計算出函數(shù)的最小正周期;(2)由計算出的取值范圍,然后利用正弦函數(shù)的性質可得出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),因此,函數(shù)的最小正周期為;(2),,當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.【點睛】本題考查三角函數(shù)周期和最值的計算,同時也考查了利用二倍角公式以及輔助角公式化簡,在求解三角函數(shù)在定區(qū)間上的最值問題時,首先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年社會健康大班教案
- 財務部全年工作概述
- 《肺栓塞診治新進展》課件
- 化妝師為客戶化妝設計妝容
- 兒童教育行業(yè)教育啟蒙培訓心得
- 防務行業(yè)戰(zhàn)術訓練培訓總結
- 2024年稅務師題庫及完整答案
- 2024年計算機網絡個人簡歷
- 2024年甘孜職業(yè)學院單招職業(yè)技能測試題庫有答案
- 農村宅基地父母繼承協(xié)議書(2篇)
- 消化鏡之電子結腸鏡課件
- 2023-2024學年安徽省蕪湖市小學語文五年級期末自測考試題附參考答案和詳細解析
- 旋挖樁基泥漿護壁施工方案全套
- 電動力學試卷及答案
- 溫室大棚租賃合同(通用5篇)
- 中學美育工作制度
- 資金管理審計
- 安徽華塑股份有限公司華塑股份產品結構調整改造一體化項目年產12萬噸生物可降解新材料環(huán)境影響報告書
- 2023年貴州貴陽市貴安新區(qū)產業(yè)發(fā)展控股集團有限公司招聘筆試題庫含答案解析
- 相干測風激光雷達系統(tǒng)設計及數(shù)據(jù)處理算法研究共3篇
- 2023中專《解剖學基礎》題庫202311593753185
評論
0/150
提交評論