2025屆上海市十校數(shù)學高一下期末預(yù)測試題含解析_第1頁
2025屆上海市十校數(shù)學高一下期末預(yù)測試題含解析_第2頁
2025屆上海市十校數(shù)學高一下期末預(yù)測試題含解析_第3頁
2025屆上海市十校數(shù)學高一下期末預(yù)測試題含解析_第4頁
2025屆上海市十校數(shù)學高一下期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆上海市十校數(shù)學高一下期末預(yù)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如右圖所示的直觀圖,其表示的平面圖形是(A)正三角形(B)銳角三角形(C)鈍角三角形(D)直角三角形2.設(shè)是等差數(shù)列的前項和,若,則A. B. C. D.3.在銳角中,角,,所對的邊分別為,,,邊上的高,且,則等于()A. B. C. D.4.已知向量,,若,則實數(shù)a的值為A. B.2或 C.或1 D.5.甲、乙兩名選手參加歌手大賽時,5名評委打的分數(shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分數(shù)的標準差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定6.若一個正四棱錐的側(cè)棱和底面邊長相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°7.在等差數(shù)列中,已知,數(shù)列的前5項的和為,則()A. B. C. D.8.七巧板是我國古代勞動人民發(fā)明的一種智力玩具,由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自黑色部分的概率為()A. B. C. D.9.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或310.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將一個圓錐截成圓臺,已知截得的圓臺的上、下底面面積之比是1:4,截去的小圓錐母線長為2,則截得的圓臺的母線長為________.12.已知,且,則________.13.在正數(shù)數(shù)列an中,a1=1,且點an,an-114.已知向量,,若,則______;若,則______.15.計算:______.16.在等比數(shù)列{an}中,a1三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且.(1)求的值;(2)若在上有且只有一個零點,,求的取值范圍.18.已知向量.(1)當時,求的值;(2)設(shè)函數(shù),當時,求的值域.19.如圖,在中,,,點在邊上,且,.(1)求;(2)求的長.20.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.21.從代號為A、B、C、D、E的5個人中任選2人(1)列出所有可能的結(jié)果;(2)若A、B、C三人為男性,D、E兩人為女性,求選出的2人中不全為男性的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】略2、A【解析】,,選A.3、A【解析】

在中得到,,在中得到,利用面積公式計算得到.【詳解】如圖所示:在中:,根據(jù)勾股定理得到在中:利用勾股定理得到,故故選A【點睛】本題考查了勾股定理,面積公式,意在考查學生解決問題的能力.4、C【解析】

根據(jù)題意,由向量平行的坐標表示公式可得,解可得a的值,即可得答案.【詳解】根據(jù)題意,向量,,若,則有,解可得或1;故選C.【點睛】本題考查向量平行的坐標表示方法,熟記平行的坐標表示公式得到關(guān)于a的方程是關(guān)鍵,是基礎(chǔ)題5、C【解析】

先求均值,再根據(jù)標準差公式求標準差,最后比較大小.【詳解】乙選手分數(shù)的平均數(shù)分別為所以標準差分別為因此s1<s2,選C.【點睛】本題考查標準差,考查基本求解能力.6、B【解析】

正四棱錐,連接底面對角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學生的計算能力和空間想象力.7、C【解析】

由,可求出,結(jié)合,可求出及.【詳解】設(shè)數(shù)列的前項和為,公差為,因為,所以,則,故.故選C.【點睛】本題考查了等差數(shù)列的前項和,考查了等差數(shù)列的通項公式,考查了計算能力,屬于基礎(chǔ)題.8、B【解析】

設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)正方形的邊長為,則陰影部分由三個小等腰直角三角形構(gòu)成,則正方形的對角線長為,則等腰直角三角形的邊長為,對應(yīng)每個小等腰三角形的面積,則陰影部分的面積之和為,正方形的面積為,若在此正方形中任取一點,則此點取自黑色部分的概率為,故選:B.【點睛】本題考查面積型幾何概型概率公式計算事件的概率,解題的關(guān)鍵在于計算出所求事件對應(yīng)區(qū)域的面積和總區(qū)域的面積,考查計算能力,屬于中等題.9、C【解析】

直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因為直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點睛】本題主要考查直線與直線垂直的充要條件,屬于基礎(chǔ)題.對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1)l1||l2?k110、A【解析】

該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運用,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

由截得圓臺上,下底面積之比可得上,下底面半徑之比,再根據(jù)小圓錐的母線即可得圓臺母線.【詳解】設(shè)截得的圓臺的母線長為.因為截得的圓臺的上、下底面面積之比是1:4,所以截得的圓臺的上、下底面半徑之比是1:2.因為截去的小圓錐母線長為2,所以,解得.【點睛】本題考查求圓臺的母線,屬于基礎(chǔ)題.12、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應(yīng)填:.考點:同角三角函數(shù)的基本關(guān)系和兩角差的三角函數(shù)公式.13、2【解析】

在正數(shù)數(shù)列an中,由點an,an-1在直線x-2y=0上,知a【詳解】由題意,在正數(shù)數(shù)列an中,a1=1,且a可得an-2即an因為a1=1,所以數(shù)列所以Sn故答案為2n【點睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的前n項和公式的應(yīng)用,同時涉及到數(shù)列與解析幾何的綜合運用,是一道好題.解題時要認真審題,仔細解答,注意等比數(shù)列的前n項和公式和通項公式的靈活運用,著重考查了推理與運算能力,屬于中檔試題.14、6【解析】

由向量平行與垂直的性質(zhì),列出式子計算即可.【詳解】若,可得,解得;若,則,解得.故答案為:6;.【點睛】本題考查平面向量平行、垂直的性質(zhì),考查平面向量的坐標運算,考查學生的計算能力,屬于基礎(chǔ)題.15、【解析】

直接利用反三角函數(shù)運算法則寫出結(jié)果即可.【詳解】解:.故答案為:.【點睛】本題考查反三角函數(shù)的運算法則的應(yīng)用,屬于基礎(chǔ)題.16、64【解析】由題設(shè)可得q3=8?q=3,則a7三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡表達式,利用求得的值.(2)令,結(jié)合的取值范圍以及三角函數(shù)的零點列不等式,解不等式求得的取值范圍.【詳解】(1),,,即.(2)令,則,,,在上有且只有一個零點,,,的取值范圍為.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)零點問題,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎(chǔ)題.18、(1)-7,(2)【解析】試題分析:(1)由向量共線得到等量關(guān)系,求出角的正切值,再利用兩角差正切公式求解:(2)先根據(jù)向量數(shù)量積,利用二倍角公式及配角公式得到三角函數(shù)關(guān)系式,再從角出發(fā)研究基本三角函數(shù)范圍:試題解析:(1),3分6分(2)8分11分,的值域為14分考點:向量平行坐標表示,三角函數(shù)性質(zhì)19、(1);(2)7.【解析】試題分析:(I)在中,利用外角的性質(zhì),得即可計算結(jié)果;(II)由正弦定理,計算得,在中,由余弦定理,即可計算結(jié)果.試題解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考點:正弦定理與余弦定理.20、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】

(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當且僅當時取等號)即面積的最大值為:【點睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應(yīng)關(guān)系來進行求解.21、(1)見解析(2)0.7【解析】

(1)從代號為、、、、的5個人中任選2人,利用列舉法能求出所有可能的結(jié)果.(2)、、三人為男性,、兩人為女性,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論