2025屆青海省西寧市大通縣第一中學(xué)高一下數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
2025屆青海省西寧市大通縣第一中學(xué)高一下數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
2025屆青海省西寧市大通縣第一中學(xué)高一下數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
2025屆青海省西寧市大通縣第一中學(xué)高一下數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
2025屆青海省西寧市大通縣第一中學(xué)高一下數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆青海省西寧市大通縣第一中學(xué)高一下數(shù)學(xué)期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,表示三條不重合的直線,,表示兩個不同的平面,則下列命題中,正確的個數(shù)是()①若,,則②,,,則③若,,則④若,,則A.0 B.1 C.2 D.32.若函數(shù)的圖象上所有的點向右平移個單位長度后得到的函數(shù)圖象關(guān)于對稱,則的值為A. B. C. D.3.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形4.在直角坐標系中,已知點,則的面積為()A. B.4 C. D.85.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.6.在平行四邊形中,,,則點的坐標為()A. B. C. D.7.設(shè)為中的三邊長,且,則的取值范圍是()A. B.C. D.8.如果成等差數(shù)列,成等比數(shù)列,那么等于()A. B. C. D.9.函數(shù)的一個對稱中心是()A. B. C. D.10.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差二、填空題:本大題共6小題,每小題5分,共30分。11.已知為鈍角,且,則__________.12.已知扇形的半徑為6,圓心角為,則扇形的弧長為______.13.已知函數(shù),若,則的取值圍為_________.14.已知數(shù)列中,,,,則的值為_____.15.已知,,若,則實數(shù)_______.16.用數(shù)學(xué)歸納法證明“”,在驗證成立時,等號左邊的式子是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.學(xué)生會有共名同學(xué),其中名男生名女生,現(xiàn)從中隨機選出名代表發(fā)言.求:同學(xué)被選中的概率;至少有名女同學(xué)被選中的概率.18.為了了解當下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位:)進行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?(2)從所抽取的樣本中身高在和的男生中隨機再選出2人調(diào)查其平時體育鍛煉習(xí)慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?19.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.20.如圖幾何體中,底面為正方形,平面,,且.(1)求證:平面;(2)求與平面所成角的大小.21.設(shè)數(shù)列的首項,為常數(shù),且(1)判斷數(shù)列是否為等比數(shù)列,請說明理由;(2)是數(shù)列的前項的和,若是遞增數(shù)列,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

①根據(jù)空間線線位置關(guān)系的定義判定;②根據(jù)面面平行的性質(zhì)判定;③根據(jù)空間線線垂直的定義判定;④根據(jù)線面垂直的性質(zhì)判定.【詳解】解:①若,,與的位置關(guān)系不定,故錯;②若,,,則或、異面,故錯;③若,,則或、異面,故錯;④若,,則,故正確.故選:.【點睛】本題考查了空間線面位置關(guān)系,考查了空間想象能力,屬于中檔題.2、C【解析】

先由題意求出平移后的函數(shù)解析式,再由對稱中心,即可求出結(jié)果.【詳解】函數(shù)的圖象上所有的點向右平移個單位長度后,可得函數(shù)的圖像,又函數(shù)的圖象關(guān)于對稱,,,故,又,時,.故選C.【點睛】本題主要考查由平移后的函數(shù)性質(zhì)求參數(shù)的問題,熟記正弦函數(shù)的對稱性,以及函數(shù)的平移原則即可,屬于??碱}型.3、D【解析】

先根據(jù)題中條件,結(jié)合正弦定理得到,求出角,同理求出角,進而可判斷出結(jié)果.【詳解】因為,由正弦定理可得,所以,即,因為角為三角形內(nèi)角,所以;同理,;所以,因此,是等腰直角三角形.故選D【點睛】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于常考題型.4、B【解析】

求出直線AB的方程及點C到直線AB的距離d,再求出,代入即可得解.【詳解】,即,點到直線的距離,,的面積為:.故選:B【點睛】本題考查直線的點斜式方程,點到直線的距離與兩點之間的距離公式,屬于基礎(chǔ)題.5、D【解析】

運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進行合理排除.【詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【點睛】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.6、A【解析】

先求,再求,即可求D坐標【詳解】,∴,則D(6,1)故選A【點睛】本題考查向量的坐標運算,熟記運算法則,準確計算是關(guān)鍵,是基礎(chǔ)題7、B【解析】

由,則,再根據(jù)三角形邊長可以證得,再利用不等式和已知可得,進而得到,再利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求解.【詳解】由題意,記,又由,則,又為△ABC的三邊長,所以,所以,另一方面,由于,所以,又,所以,不妨設(shè),且為的三邊長,所以.令,則,當時,可得,從而,當且僅當時取等號.故選B.【點睛】本題主要考查了解三角形,綜合了函數(shù)和不等式的綜合應(yīng)用,以及基本不等式和導(dǎo)數(shù)的應(yīng)用,屬于綜合性較強的題,難度較大,著重考查了分析問題和解答問題的能力,屬于難題.8、D【解析】

因為成等差數(shù)列,所以,因為成等比數(shù)列,所以,因此.故選D9、A【解析】

令,得:,即函數(shù)的對稱中心為,再求解即可.【詳解】解:令,解得:,即函數(shù)的對稱中心為,令,即函數(shù)的一個對稱中心是,故選:A.【點睛】本題考查了正切函數(shù)的對稱中心,屬基礎(chǔ)題.10、A【解析】

可不用動筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設(shè)9位評委評分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學(xué)生對中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

利用同角三角函數(shù)的基本關(guān)系即可求解.【詳解】由為鈍角,且,所以,所以.故答案為:【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,同時考查了象限角的三角函數(shù)的符號,屬于基礎(chǔ)題.12、【解析】

先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】因為圓心角,所以弧長.故答案為:【點睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.13、【解析】

由函數(shù),根據(jù),得到,再由,得到,結(jié)合余弦函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),又由,即,即,因為,則,所以或,即或,所以實數(shù)的取值圍為.故答案為:.【點睛】本題主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟練應(yīng)用余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、1275【解析】

根據(jù)遞推關(guān)系式可求得,從而利用并項求和的方法將所求的和轉(zhuǎn)化為,利用等差數(shù)列求和公式求得結(jié)果.【詳解】由得:則,即本題正確結(jié)果:【點睛】本題考查并項求和法、等差數(shù)列求和公式的應(yīng)用,關(guān)鍵是能夠利用遞推關(guān)系式得到數(shù)列相鄰兩項之間的關(guān)系,從而采用并項的方式來進行求解.15、【解析】

利用平面向量垂直的數(shù)量積關(guān)系可得,再利用數(shù)量積的坐標運算可得:,解方程即可.【詳解】因為,所以,整理得:,解得:【點睛】本題主要考查了平面向量垂直的坐標關(guān)系及方程思想,屬于基礎(chǔ)題.16、【解析】

根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因為左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點睛】項數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯點,要使問題順利得到解決,關(guān)鍵是注意兩點:一是首尾兩項的變化規(guī)律;二是相鄰兩項之間的變化規(guī)律.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)用列舉法列出所有基本事件,得到基本事件的總數(shù)和同學(xué)被選中的,然后用古典概型概率公式可求得;(2)利用對立事件的概率公式即可求得.【詳解】解:選兩名代表發(fā)言一共有,,共種情況,其中.被選中的情況是共種.所以被選中的概本為.不妨設(shè)四位同學(xué)為男同學(xué),則沒有女同學(xué)被選中的情況是:共種,則至少有一名女同學(xué)被選中的概率為.【點睛】本題考查了古典概型的概率公式和對立事件的概率公式,屬基礎(chǔ)題.18、(1)12600;(2).【解析】

(1)由頻率分布直方圖知,身高正常的頻率,于是可得答案;(2)先計算出樣本容量,再找出樣本中身高在中的人數(shù),從而利用古典概型公式得到答案.【詳解】(1)由頻率分布直方圖知,身高正常的頻率為0.7,所以估計總體,即該地區(qū)所有高二年級男生中身高正常的頻率為0.7,所以該地區(qū)高二男生中身高正常的大約有人.(2)由所抽取樣本中身高在的頻率為,可知身高在的頻率為,所以樣本容量為,則樣本中身高在中的有3人,記為,身高在中的有2人,記為,從這5人中再選2人,共有,,,,,,,,,10種不同的選法,而且每種選法都是互斥且等可能的,所以,所選2人中至少有一人身高大于185的概率.【點睛】本題主要考查頻率分布直方圖,古典概型的相關(guān)計算,意在考查學(xué)生的轉(zhuǎn)化能力,計算能力和分析能力,難度中等.19、(Ⅰ)(Ⅱ)【解析】

(1)本題是一個古典概型,可知基本事件共12個,方程當時有實根的充要條件為,滿足條件的事件中包含9個基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個幾何概型,試驗的全部約束所構(gòu)成的區(qū)域為,.構(gòu)成事件的區(qū)域為,,.根據(jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實數(shù)根”.當時,方程有實數(shù)根的充要條件為.(Ⅰ)基本事件共12個:.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.事件中包含9個基本事件,事件發(fā)生的概率為.(Ⅱ)實驗的全部結(jié)果所構(gòu)成的區(qū)域為.構(gòu)成事件的區(qū)域為,所求的概率為【點睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,屬于基礎(chǔ)題.20、(1)見解析(2)【解析】

(1)由,,結(jié)合面面平行判定定理可證得平面平面,根據(jù)面面平行的性質(zhì)證得結(jié)論;(2)連接交于點,連接,利用線面垂直的判定定理可證得平面,從而可知所求角為,在中利用正弦求得結(jié)果.【詳解】(1)四邊形為正方形又平面平面又,平面平面平面,平面平面平面平面(2)連接交于點,連接平面,平面又四邊形為正方形平面,平面即為與平面所成角且又即與平面所成角為:【點睛】本題考查線面平行的證明、直線與平面所成角的求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論