江蘇省揚州市部分區(qū)、縣2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第1頁
江蘇省揚州市部分區(qū)、縣2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第2頁
江蘇省揚州市部分區(qū)、縣2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第3頁
江蘇省揚州市部分區(qū)、縣2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第4頁
江蘇省揚州市部分區(qū)、縣2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省揚州市部分區(qū)、縣2023-2024學(xué)年中考數(shù)學(xué)全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.a(chǎn)2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b2.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體3.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.64.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.5.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy6.某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設(shè)安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x7.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.58.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°9.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.10.為考察兩名實習(xí)工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關(guān)于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差二、填空題(共7小題,每小題3分,滿分21分)11.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結(jié)果保留)12.如圖,在Rt△ABC中,E是斜邊AB的中點,若AB=10,則CE=____.13.如圖,在3×3的正方形網(wǎng)格中,點A,B,C,D,E,F(xiàn),G都是格點,從C,D,E,F(xiàn),G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.14.有一組數(shù)據(jù):2,3,5,5,x,它們的平均數(shù)是10,則這組數(shù)據(jù)的眾數(shù)是.15.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.16.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.17.不等式組的解集為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.19.(5分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.20.(8分)為了維護國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.21.(10分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.22.(10分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).23.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.24.(14分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

各項計算得到結(jié)果,即可作出判斷.【詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.2、A【解析】

根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.3、D【解析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.4、D【解析】

設(shè)AE=x,則AB=2x,由矩形的性質(zhì)得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結(jié)果.【詳解】設(shè)AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理;熟練掌握矩形的性質(zhì)和等腰直角三角形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.5、D【解析】

A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.

(?2a2)3=?8a6,故本項錯誤;C.

(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.【點睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關(guān)鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.6、C【解析】

試題分析:此題等量關(guān)系為:2×螺釘總數(shù)=螺母總數(shù).據(jù)此設(shè)未知數(shù)列出方程即可【詳解】.故選C.解:設(shè)安排x名工人生產(chǎn)螺釘,則(26-x)人生產(chǎn)螺母,由題意得

1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.7、D【解析】

解:,①+②得:3(x+y)=15,則x+y=5,故選D8、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內(nèi)角和與兩條直線平行內(nèi)錯角相等.9、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.10、D【解析】

分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進行求解后進行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關(guān)定義及求解方法是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.12、5【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CE=AB=5.考點:直角三角形斜邊上的中線.13、.【解析】

找出從C,D,E,F(xiàn),G五個點中任意取一點組成等腰三角形的個數(shù),再根據(jù)概率公式即可得出結(jié)論.【詳解】∵從C,D,E,F(xiàn),G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)與所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關(guān)鍵.14、1【解析】根據(jù)平均數(shù)為10求出x的值,再由眾數(shù)的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數(shù)據(jù)中1出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)為1.故答案為1.15、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.16、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質(zhì).17、x>1【解析】

分別求出兩個不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【點睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題(共7小題,滿分69分)18、(1)y;(2)yx+1.【解析】

(1)把A的坐標代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關(guān)于b的方程,求得b的值,進而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設(shè)AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長是解題的關(guān)鍵.19、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關(guān)于BM對稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.20、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【解析】

(1)根據(jù)直角的性質(zhì)和三角形的內(nèi)角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形21、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結(jié)合∠DCB=∠DAE可得出∠DCB=∠AEB,進而可得出AE∥DC、△AMF∽△CMD,根據(jù)相似三角形的性質(zhì)可得出=,根據(jù)AD∥BC,可得出△AMD∽△CMB,根據(jù)相似三角形的性質(zhì)可得出=,進而可得出=,即MD2=MF?MB;(2)設(shè)FM=a,則BF=3a,BM=4a.由(1)的結(jié)論可求出MD的長度,代入DF=DM+MF可得出DF的長度,由AD∥BC,可得出△AFD∽△△EFB,根據(jù)相似三角形的性質(zhì)可得出AF=EF,利用“對角線互相平分的四邊形是平行四邊形”即可證出四邊形ABED是平行四邊形.詳解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF?MB.(2)設(shè)FM=a,則BF=3a,BM=4a.由MD2=MF?MB,得:MD2=a?4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四邊形ABED是平行四邊形.點睛:本題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定、平行線的性質(zhì)以及矩形,解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)找出=、=;(2)牢記“對角線互相平分的四邊形是平行四邊形”.22、(1)坡頂?shù)降孛娴木嚯x為米;移動信號發(fā)射塔的高度約為米.【解析】

延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設(shè)AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設(shè)BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經(jīng)檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數(shù),坡角與坡角等,解決本題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.23、(1)答案見解析;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論