版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省監(jiān)利一中新高考仿真卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,若對(duì)任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.52.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.3.在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于()A. B. C. D.4.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A. B. C. D.15.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.6.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.7.已知的面積是,,,則()A.5 B.或1 C.5或1 D.8.已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.9.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,10.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”11.已知集合,,則A. B.C. D.12.五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.工人在安裝一個(gè)正六邊形零件時(shí),需要固定如圖所示的六個(gè)位置的螺栓.若按一定順序?qū)⒚總€(gè)螺栓固定緊,但不能連續(xù)固定相鄰的2個(gè)螺栓.則不同的固定螺栓方式的種數(shù)是________.14.如圖,四面體的一條棱長(zhǎng)為,其余棱長(zhǎng)均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.15.在正奇數(shù)非減數(shù)列中,每個(gè)正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對(duì)所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.16.已知,為正實(shí)數(shù),且,則的最小值為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.18.(12分)已知雙曲線及直線.(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;(2)若l與C交于A,B兩點(diǎn),O是原點(diǎn),且,求實(shí)數(shù)k的值.19.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個(gè)零點(diǎn),且;(2)若當(dāng)時(shí),不等式恒成立,求證:.20.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點(diǎn)處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點(diǎn),證明:當(dāng)時(shí),.21.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22.(10分)已知函數(shù)的最小正周期是,且當(dāng)時(shí),取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)條件將問題轉(zhuǎn)化為,對(duì)于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對(duì)任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對(duì)于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,將代入得:,,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.2、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).3、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.4、C【解析】試題分析:設(shè),由題意,顯然時(shí)不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選C.考點(diǎn):1.拋物線的簡(jiǎn)單幾何性質(zhì);2.均值不等式.【方法點(diǎn)晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運(yùn)用,屬于中檔題.解題時(shí)一定要注意分析條件,根據(jù)條件,利用向量的運(yùn)算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號(hào)是否成立,否則易出問題.5、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識(shí),是一道中檔題.6、A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.7、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.8、C【解析】
畫出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于??碱}.9、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點(diǎn)時(shí),函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.10、B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.11、D【解析】
因?yàn)?,所以,,故選D.12、D【解析】
三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對(duì)立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對(duì)立事件,即甲、乙兩人在同一個(gè)單位的概率,本題有一定難度.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】分析:首先將選定第一個(gè)釘,總共有6種方法,假設(shè)選定1號(hào),之后分析第二步,第三步等,按照分類加法計(jì)數(shù)原理,可以求得共有10種方法,利用分步乘法計(jì)數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個(gè)可以從6個(gè)釘里任意選一個(gè),共有6種選擇方法,并且是機(jī)會(huì)相等的,若第一個(gè)選1號(hào)釘?shù)臅r(shí)候,第二個(gè)可以選3,4,5號(hào)釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點(diǎn)睛:該題考查的是有關(guān)分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,在解題的過程中,需要逐個(gè)的將對(duì)應(yīng)的過程寫出來,所以利用列舉法將對(duì)應(yīng)的結(jié)果列出,而對(duì)于第一個(gè)選哪個(gè)是機(jī)會(huì)均等的,從而用乘法運(yùn)算得到結(jié)果.14、(或?qū)懗?【解析】試題分析:設(shè),取中點(diǎn)則,因此,所以,因?yàn)樵趩握{(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點(diǎn):函數(shù)最值,函數(shù)單調(diào)區(qū)間15、2【解析】
將已知數(shù)列分組為(1),,共個(gè)組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.16、【解析】
由,為正實(shí)數(shù),且,可知,于是,可得,再利用基本不等式即可得出結(jié)果.【詳解】解:,為正實(shí)數(shù),且,可知,,.當(dāng)且僅當(dāng)時(shí)取等號(hào).的最小值為.故答案為:.【點(diǎn)睛】本題考查了基本不等式的性質(zhì)應(yīng)用,恰當(dāng)變形是解題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡(jiǎn)可得.令,,因?yàn)?,所以?所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因?yàn)樵谏鲜菧p函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實(shí)根為,即,要證,由可知,即要證.當(dāng)時(shí),,,因而在上單調(diào)遞增.當(dāng)時(shí),,,因而在上單調(diào)遞減.因?yàn)?,所以,要證.即要證.記,.因?yàn)?,所以,則..設(shè),,當(dāng)時(shí),.時(shí),,故.且,故,因?yàn)椋?因此,即在上單調(diào)遞增.所以,即.故得證.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.18、(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點(diǎn),可得,進(jìn)而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個(gè)不同的交點(diǎn),則方程組有兩個(gè)不同的實(shí)數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個(gè)不同交點(diǎn)時(shí),k的取值范圍是.(2)設(shè)交點(diǎn),直線l與y軸交于點(diǎn),,.,即,整理得,解得或或.又,或時(shí),的面積為.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計(jì)算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計(jì)算求解能力,屬于中檔題.19、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號(hào),即可證明結(jié)論;(2)當(dāng)時(shí),不等式恒成立,分離參數(shù)只需時(shí),恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因?yàn)?,,所以在區(qū)間上有且僅有一個(gè)零點(diǎn),且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當(dāng)時(shí),;當(dāng)時(shí),恒成立,設(shè)(),所以.由(1)可知,,使,所以,當(dāng)時(shí),,當(dāng)時(shí),,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因?yàn)?,所以,從而,所?令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點(diǎn)、極值最值、不等式的證明,分離參數(shù)是解題的關(guān)鍵,意在考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.20、(Ⅰ);(Ⅱ)證明見解析【解析】
(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點(diǎn),設(shè)零點(diǎn)為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時(shí),.【點(diǎn)睛】本題考查了函數(shù)的切線問題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.21、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個(gè)法向量與平面的一個(gè)法向量,再利用向量數(shù)量積運(yùn)算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因?yàn)?,所以平面,又平面,所?(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點(diǎn),為的中點(diǎn),所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,,,由平面幾何知識(shí),得.則,,,,所以,,.設(shè)平面的法向量為,由,可得,令,則,,所以.同理,平面的一個(gè)法向量為.設(shè)平面與平面所成角為,則,所以.【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)安全部工作年終總結(jié)
- 老年癡呆用藥指導(dǎo)護(hù)理
- 裝載機(jī)系統(tǒng)培訓(xùn)
- 四川省遂寧市遂寧中學(xué)2024-2025學(xué)年度上期高一半期考試英語 - 副本
- 湖南省長(zhǎng)沙市長(zhǎng)郡梅溪湖中學(xué)2024-2025學(xué)年上學(xué)期八年級(jí)第一次月考英語試題(含答案無聽力部分)
- 廣東省江門市福泉奧林匹克學(xué)校2024-2025學(xué)年上學(xué)期七年級(jí)數(shù)學(xué)第一次月考試題(無答案)
- 2024-2025學(xué)年寧夏中衛(wèi)市中衛(wèi)七中七年級(jí)(上)第一次月考數(shù)學(xué)試卷(無答案)
- 2024-2025學(xué)年初中九年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷及答案(人教版)
- T-ZFDSA 30-2024 靈芝鴨制作標(biāo)準(zhǔn)
- 陜西省安康市漢濱區(qū)部分學(xué)校2024-2025學(xué)年七年級(jí)上學(xué)期期中地理試卷
- 醫(yī)用內(nèi)窺鏡冷光源產(chǎn)品技術(shù)要求深圳邁瑞
- 第二章區(qū)段站布置圖
- 《將本土美食文化融入幼兒園課程的實(shí)踐》 論文
- 直擊本質(zhì):洞察事物底層邏輯的思考方法
- 火災(zāi)與觸電現(xiàn)場(chǎng)處置方案
- 榴蓮課件完整版
- 人事部崗位sop完整版
- 深圳某小學(xué)項(xiàng)目交通影響評(píng)價(jià)報(bào)告
- 收費(fèi)站大棚拆除施工方案
- 2021年國(guó)開電大《現(xiàn)代教育原理》形考任務(wù)1答案2
- 2023年四川農(nóng)信校園招聘筆試題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論