版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省長春市第一五一中學(xué)高一下數(shù)學(xué)期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖所示的程序框圖,則輸出的s的值為()A. B. C. D.2.已知向量,,若,則與的夾角為()A. B. C. D.3.已知在R上是奇函數(shù),且滿足,當(dāng)時,,則()A.-2 B.2 C.-98 D.984.若,則()A.- B. C. D.5.設(shè)全集,集合,,則()A. B. C. D.6.將函數(shù)y=sin2x的圖象向右平移A.在區(qū)間[-πB.在區(qū)間[5πC.在區(qū)間[-πD.在區(qū)間[π7.已知函數(shù),若,,則()A. B.2 C. D.8.直線l:與圓C:交于A,B兩點,則當(dāng)弦AB最短時直線l的方程為A. B.C. D.9.已知為銳角,且滿足,則()A. B. C. D.10.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù).例如:,,已知函數(shù),則函數(shù)的值域為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中醫(yī)藥是反映中華民族對生命、健康和疾病的認(rèn)識,具有悠久歷史傳統(tǒng)和獨特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華文明的瑰寶.某科研機構(gòu)研究發(fā)現(xiàn),某品種中成藥的藥物成份的含量(單位:)與藥物功效(單位:藥物單位)之間具有關(guān)系:.檢測這種藥品一個批次的5個樣本,得到成份的平均值為,標(biāo)準(zhǔn)差為,估計這批中成藥的藥物功效的平均值為__________藥物單位.12.設(shè)扇形的半徑長為,面積為,則扇形的圓心角的弧度數(shù)是13.已知函數(shù)y=sin(x+)(>0,-<)的圖象如圖所示,則=________________.14.設(shè)為數(shù)列的前項和,若,則數(shù)列的通項公式為__________.15.若把寫成的形式,則______.16.如圖為函數(shù)(,,,)的部分圖像,則函數(shù)解析式為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.18.在中,已知,其中角所對的邊分別為.求(1)求角的大??;(2)若,的面積為,求的值.19.制訂投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利分別為和,可能的最大虧損率分別為和.投資人計劃投資金額不超過億元,要求確??赡艿馁Y金虧損不超過億元,問投資人對甲、乙兩個項目各投資多少億元,才能使可能的盈利最大?20.在中,,且的邊a,b,c所對的角分別為A,B,C.(1)求的值;(2)若,試求周長的最大值.21.如圖,在中,點在邊上,為的平分線,.(1)求;(2)若,,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
模擬程序運行,觀察變量值,判斷循環(huán)條件可得結(jié)論.【詳解】運行程序框圖,,;,;,,此時滿足條件,跳出循環(huán),輸出的.故選:A.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時只要模擬程序運行即可得結(jié)論.2、D【解析】∵,,⊥,∴,解得.∴.∴,又.設(shè)向量與的夾角為,則.又,∴.選D.3、A【解析】
由在R上是奇函數(shù)且周期為4可得,即可算出答案【詳解】因為在R上是奇函數(shù),且滿足所以因為當(dāng)時,所以故選:A【點睛】本題考查的是函數(shù)的奇偶性和周期性,較簡單.4、B【解析】
首先觀察兩個角之間的關(guān)系:,因此兩邊同時取余弦值即可.【詳解】因為所以所以,選B.【點睛】本題主要考查了三角函的誘導(dǎo)公式.解決此題的關(guān)鍵在于拼湊出,再利用誘導(dǎo)公式(奇變偶不變、符號看象限)即可.5、D【解析】
先求得集合的補集,然后求其與集合的交集,由此得出正確選項.【詳解】依題意,所以,故選D.【點睛】本小題主要考查集合補集、交集的概念和運算,屬于基礎(chǔ)題.6、A【解析】
函數(shù)y=sin2x的圖象向右平移y=sin2kπ-π單調(diào)遞減區(qū)間:2kπ+π2≤2x-π3【詳解】本題考查了正弦型函數(shù)圖象的平移變換以及求正弦型函數(shù)的單調(diào)區(qū)間.7、C【解析】
由函數(shù)的解析式,求得,,進而得到,,結(jié)合兩角差的余弦公式和三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,函數(shù),令,即,即,所以,令,即,即,所以,又因為,,即,,所以,,即,,平方可得,,兩式相加可得,所以.故選:C.【點睛】本題主要考查了兩角和與差的余弦公式,三角函數(shù)的基本關(guān)系式的應(yīng)用,以及函數(shù)的解析式的應(yīng)用,其中解答中合理應(yīng)用三角函數(shù)的恒等變換的公式進行運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.8、A【解析】
先求出直線經(jīng)過的定點,再求出弦AB最短時直線l的方程.【詳解】由題得,所以直線l過定點P.當(dāng)CP⊥l時,弦AB最短.由題得,所以.所以直線l的方程為.故選:A【點睛】本題主要考查直線過定點問題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.9、D【解析】
由,得,,即可得到本題答案.【詳解】由,得,所以,,所以.故選:D【點睛】本題主要考查兩角和的正切公式的應(yīng)用以及特殊角的三角函數(shù)值.10、D【解析】
分離常數(shù)法化簡f(x),根據(jù)新定義即可求得函數(shù)y=[f(x)]的值域.【詳解】,又>0,∴,∴∴當(dāng)x∈(1,1)時,y=[f(x)]=1;當(dāng)x∈[1,)時,y=[f(x)]=1.∴函數(shù)y=[f(x)]的值域是{1,1}.故選D.【點睛】本題考查了新定義的理解和應(yīng)用,考查了分離常數(shù)法求一次分式函數(shù)的值域,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、92【解析】
由題可得,進而可得,再計算出,從而得出答案.【詳解】5個樣本成份的平均值為,標(biāo)準(zhǔn)差為,所以,,即,解得因為,所以所以這批中成藥的藥物功效的平均值藥物單位【點睛】本題考查求幾個數(shù)的平均數(shù),解題的關(guān)鍵是求出,屬于一般題.12、2【解析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點:扇形面積公式.13、【解析】
由圖可知,14、,【解析】
令時,求出,再令時,求出的值,再檢驗的值是否符合,由此得出數(shù)列的通項公式.【詳解】當(dāng)時,,當(dāng)時,,不合適上式,當(dāng)時,,不合適上式,因此,,.故答案為,.【點睛】本題考查利用前項和求數(shù)列的通項,考查計算能力,屬于中等題.15、【解析】
將角度化成弧度,再用象限角的表示方法求解即可.【詳解】解:.故答案為:.【點睛】本題考查弧度與角度的互化,象限角的表示,屬于基礎(chǔ)題.16、【解析】
由函數(shù)的部分圖像,先求得,得到,再由,得到,結(jié)合,求得,即可得到函數(shù)的解析式.【詳解】由題意,根據(jù)函數(shù)的部分圖像,可得,所以,又由,即,又由,即,解得,即,又因為,所以,所以.故答案為:.【點睛】本題主要考查了利用三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】分析:(1)利用的關(guān)系,求解;倒序相加求。(2)先用錯位相減求,分離參數(shù),使得對于一切的恒成立,轉(zhuǎn)化為求的最值。詳解:(1)時滿足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立對于一切的恒成立,即,令,則當(dāng)且僅當(dāng)時等號成立,故所以為所求.點睛:1、,一定要注意,當(dāng)時要驗證是否滿足數(shù)列。2、等比乘等差結(jié)構(gòu)的數(shù)列用錯位相減。3、數(shù)列中的恒成立問題與函數(shù)中的恒成立問題解法一致。18、(1);(2)1.【解析】試題分析:(1)利用正弦定理角化邊,結(jié)合三角函數(shù)的性質(zhì)可得;(2)由△ABC的面積可得,由余弦定理可得,結(jié)合正弦定理可得:的值是1.試題解析:(1)由正弦定理,得,∵,∴.即,而∴,則(2)由,得,由及余弦定理得,即,所以.19、投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【解析】
設(shè)投資人分別用億元、億元投資甲、乙兩個項目,根據(jù)題意列出變量、所滿足的約束條件和線性目標(biāo)函數(shù),利用平移直線的方法得出線性目標(biāo)函數(shù)取得最大值時的最優(yōu)解,并將最優(yōu)解代入線性目標(biāo)函數(shù)可得出盈利的最大值,從而解答該問題.【詳解】設(shè)投資人分別用億元、億元投資甲、乙兩個項目,由題意知,即,目標(biāo)函數(shù)為.上述不等式組表示平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.由圖可知,當(dāng)直線經(jīng)過點時,該直線在軸上截距最大,此時取得最大值,解方程組,得,所以,點的坐標(biāo)為.當(dāng),時,取得最大值,此時,(億元).答:投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【點睛】本題考查線性規(guī)劃的實際應(yīng)用,考查利用數(shù)學(xué)知識解決實際問題,解題的關(guān)鍵就是列出變量所滿足的約束條件,并利用數(shù)形結(jié)合思想求解,考查分析問題和解決問題的能力,屬于中等題.20、(1)(2)【解析】
(1)利用三角公式化簡得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【詳解】(1)原式(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鏟車轉(zhuǎn)讓與全球市場拓展合作合同3篇
- 音樂旋律燈課課程設(shè)計
- 業(yè)務(wù)合作合同范本
- 采油工程含課程設(shè)計
- 陀螺內(nèi)轉(zhuǎn)軸課程設(shè)計
- 針織廢水課程設(shè)計
- 調(diào)查問卷系統(tǒng)課程設(shè)計
- 藝術(shù)彩燈的PLC控制課程設(shè)計
- 繼電器課程設(shè)計論文
- 人力資源內(nèi)訓(xùn)課程設(shè)計
- 2025年湖北省武漢市東湖高新區(qū)管委會招聘工作人員歷年高頻重點提升(共500題)附帶答案詳解
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫參考答案
- 中國農(nóng)業(yè)銀行信用借款合同
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之9:“5領(lǐng)導(dǎo)作用-5.3創(chuàng)新戰(zhàn)略”(雷澤佳編制-2025B0)
- 江蘇省連云港市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 初中英語聽力高頻詞
- 2025年生活飲用水監(jiān)督檢查工作計劃
- Unit 3 My School Section B 1a-1d 教學(xué)實錄 2024-2025學(xué)年人教版七年級上冊英語
- 2024年度知識產(chǎn)權(quán)許可合同:萬達商業(yè)廣場商標(biāo)使用許可合同3篇
- 服務(wù)營銷課件-課件
- 一年級期末數(shù)學(xué)家長會課件
評論
0/150
提交評論