版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春市豐城九中、高安二中、宜春一中、萬載中學高三第一次模擬考試新高考數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.2.根據(jù)如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.3.已知實數(shù),則下列說法正確的是()A. B.C. D.4.拋物線的準線方程是,則實數(shù)()A. B. C. D.5.已知函數(shù)若關于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.6.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.8.關于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.9.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數(shù)之源,其中河圖的排列結(jié)構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列的概率為()A. B. C. D.11.若向量,則()A.30 B.31 C.32 D.3312.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的首項,函數(shù)在上有唯一零點,則數(shù)列|的前項和__________.14.函數(shù)與的圖象上存在關于軸的對稱點,則實數(shù)的取值范圍為______.15.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.16.在的二項展開式中,所有項的系數(shù)的和為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當時,證明:.18.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.19.(12分)已知函數(shù),.(1)當時,求函數(shù)的值域;(2),,求實數(shù)的取值范圍.20.(12分)設數(shù)列,其前項和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.21.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.22.(10分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數(shù))與圓的位置關系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.2、C【解析】
根據(jù)程序圖,當x<0時結(jié)束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運行,x=1-2=-1<0,程序運行結(jié)束,得,故選C.【點睛】本題考查程序框圖,是基礎題.3、C【解析】
利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.4、C【解析】
根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.5、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.6、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.7、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設中給出的原函數(shù)與導數(shù)的關系構建新函數(shù),本題屬于中檔題.8、B【解析】
利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應用.9、B【解析】
由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.10、C【解析】
先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.11、C【解析】
先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎題.12、A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由函數(shù)為偶函數(shù),可得唯一零點為,代入可得數(shù)列的遞推關系式,再進行配湊轉(zhuǎn)換為等比數(shù)列,最后運用分部求和可得答案.【詳解】因為為偶函數(shù),在上有唯一零點,所以,∴,∴,∴為首項為2,公比為2的等比數(shù)列.所以,.故答案為:【點睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點,同時也考查了由遞推關系式求數(shù)列的通項,考查了數(shù)列的分部求和,屬于中檔題.14、【解析】
先求得與關于軸對稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數(shù)的取值范圍.【詳解】因為關于軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉(zhuǎn)化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【點睛】本小題主要考查利用導數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想和應用意識.15、1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.16、1【解析】
設,令,的值即為所有項的系數(shù)之和?!驹斀狻吭O,令,所有項的系數(shù)的和為?!军c睛】本題主要考查二項式展開式所有項的系數(shù)的和的求法─賦值法。一般地,對于,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)求導得,分類討論和,利用導數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構造函數(shù),利用導數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構造新函數(shù),通過導數(shù)證明不等式,考查轉(zhuǎn)化思想和計算能力.18、(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導后根據(jù)導函數(shù)的符號判斷單調(diào)性.(Ⅱ)分析題意可得對任意,恒成立,構造函數(shù),則有對任意,恒成立,然后通過求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數(shù)在上單調(diào)遞增;當時,令,解得;令,解得.故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.綜上,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(II)由題意知.,當時,函數(shù)單調(diào)遞增.不妨設,又函數(shù)單調(diào)遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調(diào)遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調(diào)遞增,所以函數(shù)在上的最大值為.由,解得.故實數(shù)的最小值為.19、(1);(2).【解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實數(shù)的取值范圍.【詳解】(1)當時,.當時,;當時,.函數(shù)的值域為;(2)不等式等價于,即在區(qū)間內(nèi)有解當時,,此時,,則;當時,,函數(shù)在區(qū)間上單調(diào)遞增,當時,,則.綜上,實數(shù)的取值范圍是.【點睛】本題主要考查含絕對值函數(shù)的值域與含絕對值不等式有解的問題,利用絕對值的應用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關鍵,考查分類討論思想的應用,屬于中等題.20、(1),;(2)詳見解析.【解析】
(1)當時,,當時,,當時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)21、(1);(2)證明見解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當時,恒成立,;②當時,,即,;③當時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當且僅當時取等號)(當且僅當時取等號)(當且僅當時取等號)上述三式相加可得(當且僅當時取等號),,故得證.【點睛】本題考查解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 放款合同范本
- 17施工合同范本
- 科技創(chuàng)業(yè)公司保密協(xié)議書
- 2024年改性乳化瀝青設備項目可行性研究報告
- 2024至2030年中國麻藍紗線行業(yè)投資前景及策略咨詢研究報告
- 室內(nèi)裝潢行業(yè)合同管理制度
- 社區(qū)服務中心家長意見處理制度
- 公司車輛維修及報銷協(xié)議書
- 牙齒清洗液產(chǎn)業(yè)規(guī)劃專項研究報告
- 碼布機產(chǎn)品入市調(diào)查研究報告
- (新版)云南醫(yī)保練兵理論知識考試題庫大全-上(選擇題)
- 2024年遼寧職業(yè)學院單招職業(yè)適應性測試題庫必考題
- 中華人民共和國突發(fā)事件應對法課件
- 2024年武漢城投集團公開招聘【151人】高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 小升初小學語文總復習:關聯(lián)詞語、修改病句、修辭、標點符號、積累與運用
- 對輥破碎機使用說明書
- 現(xiàn)代殯葬技術與管理-職業(yè)生涯規(guī)劃
- 2024年大學計算機基礎考試題庫附答案(完整版)
- 中山大學240英語(單考)歷年考研真題及詳解
- 廣東省智慧高速公路建設指南(2023年版)
- 高校思想政治教育生活化研究的開題報告
評論
0/150
提交評論