2025屆云南省普洱市墨江第二中學(xué)高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2025屆云南省普洱市墨江第二中學(xué)高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2025屆云南省普洱市墨江第二中學(xué)高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2025屆云南省普洱市墨江第二中學(xué)高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2025屆云南省普洱市墨江第二中學(xué)高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆云南省普洱市墨江第二中學(xué)高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,,,,則()A. B. C. D.2.已知等差數(shù)列中,若,則取最小值時的()A.9 B.8 C.7 D.63.在中,若,則的面積為().A.8 B.2 C. D.44.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號為()A.①②③ B.①② C.①③ D.②③5.直線的傾斜角不可能為()A. B. C. D.6.下列命題中正確的是()A.第一象限角必是銳角; B.相等的角終邊必相同;C.終邊相同的角相等; D.不相等的角其終邊必不相同.7.在平面直角坐標(biāo)系中,過點(diǎn)的直線與軸的正半軸,軸的正半軸分別交于兩點(diǎn),則的面積的最小值為()A.1 B.2 C.3 D.48.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.9.某程序框圖如圖所示,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入的條件可以為()A. B. C. D.10.已知兩條直線m,n,兩個平面α,β,給出下面四個命題:①m//n,m⊥α?n⊥α;②α//β,m?α,n?β?m//n;③m//n,m//α?n//α;④α//β,m//n,m⊥α?n⊥β其中正確命題的序號是()A.①④B.②④C.①③D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則函數(shù)的最小值是___.12.設(shè)的內(nèi)角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.13.函數(shù)的最小正周期是________.14.已知,,,則的最小值為______.15.已知等差數(shù)列{an}的公差為d,且d≠0,其前n項(xiàng)和為Sn,若滿足a1,a2,a5成等比數(shù)列,且S3=9,則d=_____,Sn=_____.16.函數(shù)的反函數(shù)為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,點(diǎn)在邊上,為的平分線,.(1)求;(2)若,,求.18.如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,,,,點(diǎn)在棱上,且.(1)證明:平面;(2)求三棱錐的體積.19.某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設(shè)備,該設(shè)備的第1年的維護(hù)費(fèi)支出為20萬元,從第2年到第6年,每年的維修費(fèi)增加4萬元,從第7年開始,每年維修費(fèi)為上一年的125%.(1)求第n年該設(shè)備的維修費(fèi)的表達(dá)式;(2)設(shè),若萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對設(shè)備更新,求在第幾年必須對該設(shè)備進(jìn)行更新?20.某算法框圖如圖所示.(1)求函數(shù)的解析式及的值;(2)若在區(qū)間內(nèi)隨機(jī)輸入一個值,求輸出的值小于0的概率.21.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調(diào)遞增區(qū)間;(3)設(shè)為坐標(biāo)原點(diǎn),直線與函數(shù)的圖像自左至右相交于點(diǎn),,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

直接用正弦定理直接求解邊.【詳解】在中,,,由余弦定理有:,即故選:D【點(diǎn)睛】本題考查利用正弦定理解三角形,屬于基礎(chǔ)題.2、C【解析】

是等差數(shù)列,先根據(jù)已知求出首項(xiàng)和公差,再表示出,由的最小值確定n?!驹斀狻坑深}得,,解得,那么,當(dāng)n=7時,取到最小值-49.故選:C【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和,是基礎(chǔ)題。3、C【解析】

由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【點(diǎn)睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運(yùn)算能力.4、D【解析】

由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【點(diǎn)睛】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.5、D【解析】

根據(jù)直線方程,分類討論求得直線的斜率的取值范圍,進(jìn)而根據(jù)傾斜角和斜率的關(guān)系,即可求解,得到答案.【詳解】由題意,可得當(dāng)時,直線方程為,此時傾斜角為;當(dāng)時,直線方程化為,則斜率為:,即,又由,解得或,又由且,所以傾斜角的范圍為,顯然A,B都符合,只有D不符合,故選D.【點(diǎn)睛】本題主要考查了直線方程的應(yīng)用,以及直線的傾斜角和斜率的關(guān)系,著重考查了分類討論思想,以及推理與運(yùn)算能力.6、B【解析】

根據(jù)終邊相同的角和象限角的定義,舉反例或直接進(jìn)行判斷可得最后結(jié)果.【詳解】是第一象限角,但不是銳角,故A錯誤;與終邊相同,但他們不相等,故C錯誤;與不相等,但他們的終邊相同,故D錯誤;因?yàn)榻堑氖歼呍趚軸的非負(fù)半軸上,則相等的角終邊必相同,故B正確.故選:B【點(diǎn)睛】本題考查了終邊相同的角和象限角的定義,利用定義舉出反例進(jìn)行判斷是解決本題的關(guān)鍵.7、B【解析】

利用直線的方程過點(diǎn)分別與軸的正半軸,軸的正半軸分別交于兩點(diǎn),可得:,,結(jié)合基本不等式的性質(zhì)即可得出.【詳解】在平面直角坐標(biāo)系中,過點(diǎn)的直線與軸的正半軸,軸的正半軸分別交于兩點(diǎn),且構(gòu)成,所以,直線斜率一定存在,設(shè),,:,,則有:,,解得,當(dāng)且僅當(dāng):,即時,等號成立,的面積為:.故選:B【點(diǎn)睛】本題考查了直線的截距式方程、基本不等式求最值,注意驗(yàn)證等號成立的條件,屬于基礎(chǔ)題.8、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點(diǎn):正弦定理的應(yīng)用.9、D【解析】

由已知可得,該程序是利用循環(huán)結(jié)構(gòu)計(jì)算輸出變量S的值,模擬過程分別求出變量的變化情況可的結(jié)果.【詳解】程序在運(yùn)行過程中,判斷框前的變量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此時應(yīng)該結(jié)束循環(huán)體,并輸出S的值為26,所以判斷框應(yīng)該填入條件為:故選D【點(diǎn)睛】本題主要考查了程序框圖,屬于基礎(chǔ)題.10、A【解析】依據(jù)線面垂直的判定定理可知命題①是正確的;對于命題②,直線m,n還有可能是異面,因此不正確;對于命題③,還有可能直線n?α,因此③命題不正確;依據(jù)線面垂直的判定定理可知命題④是正確的,故應(yīng)選答案A.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】因?yàn)椋?,函?shù),當(dāng)且僅當(dāng),即時等號成立.點(diǎn)睛:本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.在用基本不等式時,注意"一正二定三相等"這三個條件,關(guān)鍵是找定值,在本題中,將拆成,湊成定值,再用基本不等式求出最小值.12、【解析】

由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點(diǎn)睛】本題主要考查余弦定理以及韋達(dá)定理,屬于中檔題.13、【解析】

根據(jù)周期公式即可求解.【詳解】函數(shù)的最小正周期故答案為:【點(diǎn)睛】本題主要考查了正弦型函數(shù)的周期,屬于基礎(chǔ)題.14、【解析】

將所求的式子變形為,展開后可利用基本不等式求得最小值.【詳解】解:,,,,當(dāng)且僅當(dāng)時取等號.故答案為1.【點(diǎn)睛】本題考查了“乘1法”和基本不等式,屬于基礎(chǔ)題.由于已知條件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式來求得最小值了.15、2n2.【解析】

由已知列關(guān)于首項(xiàng)與公差的方程組,求解可得首項(xiàng)與公差,再由等差數(shù)列的前項(xiàng)和求解.【詳解】由題意,有,即,解得,所以.故答案為:,.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式與前項(xiàng)和,考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.16、【解析】

首先求出在區(qū)間的值域,再由表示的含義,得到所求函數(shù)的反函數(shù).【詳解】因?yàn)?,所以?所以的反函數(shù)是.故答案為:【點(diǎn)睛】本題主要考查反函數(shù)定義,同時考查了三角函數(shù)的值域問題,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)令,正弦定理,得,代入面積公式計(jì)算得到答案.(2)由題意得到,化簡得到,,再利用面積公式得到答案.【詳解】(1)因?yàn)榈钠椒志€,令在中,,由正弦定理,得所以.(2)因?yàn)椋?,又?得,,因?yàn)?,所以所?【點(diǎn)睛】本題考查了面積的計(jì)算,意在考查學(xué)生靈活利用正余弦定理和面積公式解決問題的能力.18、(1)見證明;(2)4【解析】

(1)取的三等分點(diǎn),使,證四邊形為平行四邊形,運(yùn)用線面平行判定定理證明.(2)三棱錐的體積可以用求出結(jié)果.【詳解】(1)證明:取的三等分點(diǎn),使,連接,.因?yàn)椋?,所以?因?yàn)椋?,所以,,所以四邊形為平行四邊形,所以,因?yàn)槠矫妫矫?,所以平?(2)解:因?yàn)?,,所以的面積為,因?yàn)榈酌妫匀忮F的高為,所以三棱錐的體積為.因?yàn)?,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【點(diǎn)睛】本題考查了線面平行的判定定理、三棱錐體積的計(jì)算,在證明線面平行時需要構(gòu)造平行四邊形來證明,三棱錐的體積計(jì)算可以選用割、補(bǔ)等方法.19、(1)(2)第9年【解析】

(1)將數(shù)列分為兩部分,分別利用等差數(shù)列和等比數(shù)列公式得到答案.(2)當(dāng)時,恒成立,當(dāng)時,,判斷是遞增數(shù)列,計(jì)算,得到答案.【詳解】(1)當(dāng)時,數(shù)列是首項(xiàng)為20,公差為4的等差數(shù)列,;當(dāng)時,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,又所以.因此第n年該設(shè)備的維修費(fèi)的表達(dá)式因此為(2)設(shè)數(shù)列的前項(xiàng)和為,由等差及等比的求和公式得:當(dāng)時,,此時恒成立,即該設(shè)備繼續(xù)使用;當(dāng)時,,此時因?yàn)椋此允沁f增數(shù)列,又,故在第9年必須對該設(shè)備進(jìn)行更新.【點(diǎn)睛】本題考查了數(shù)列的應(yīng)用,意在考查學(xué)生利用數(shù)列知識解決問題的能力和應(yīng)用能力.20、(1);(2)【解析】

(1)從程序框圖可提煉出分段函數(shù)的函數(shù)表達(dá)式,從而計(jì)算得到的值;(2)此題為幾何概型,分類討論得到滿足條件下的函數(shù)x值,從而求得結(jié)果.【詳解】(1)由算法框圖得:當(dāng)時,,當(dāng)時,,當(dāng)時,,,(2)當(dāng)時,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論