版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
遼寧省丹東市2025屆高一下數(shù)學期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)滿足,則的最大值為()A. B. C. D.2.若,且,則的值為A. B. C. D.3.在中,點滿足,則()A. B.C. D.4.同時拋擲兩個骰子,則向上的點數(shù)之和是的概率是()A. B. C. D.5.數(shù)列只有5項,分別是3,5,7,9,11,的一個通項公式為()A. B. C. D.6.已知點在角的終邊上,函數(shù)圖象上與軸最近的兩個對稱中心間的距離為,則的值為()A. B. C. D.7.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.將函數(shù)(其中)的圖象向右平移個單位,若所得圖象與原圖象重合,則不可能等于()A.0 B. C. D.9.若a,b是方程的兩個根,且a,b,2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值為()A.-4 B.-3 C.-2 D.-110.已知某地區(qū)中小學生人數(shù)和近視情況分別如圖1和圖2所示.為了解該地區(qū)中小學生的近視形成原因,用分層抽樣的方法抽取4%的學生進行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別為()A.400,40 B.200,10 C.400,80 D.200,20二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)fx=Asin12.在中,分別是角的對邊,,且的周長為5,面積,則=______13.將正偶數(shù)按下表排列成列,每行有個偶數(shù)的蛇形數(shù)列(規(guī)律如表中所示),則數(shù)字所在的行數(shù)與列數(shù)分別是_______________.第列第列第列第列第列第行第行第行第行……14.已知圓錐的頂點為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.15.下邊程序執(zhí)行后輸出的結(jié)果是().16.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值時的值.18.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,,.(1)若,求△ABC的周長;(2)若CD為AB邊上的中線,且,求△ABC的面積.19.已知為的三內(nèi)角,且其對邊分別為.且(1)求的值;(2)若,三角形面積,求的值.20.已知數(shù)列的前項和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.21.在中,內(nèi)角、、所對的邊分別為,,,且滿足.(1)求角的大?。唬?)若,是方程的兩根,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由原式,明顯考查斜率的幾何意義,故上下同除以得,再畫圖分析求得的取值范圍,再用基本不等式求解即可.【詳解】所求式,上下同除以得,又的幾何意義為圓上任意一點到定點的斜率,由圖可得,當過的直線與圓相切時取得臨界條件.當過坐標為時相切為一個臨界條件,另一臨界條件設,化成一般式得,因為圓與直線相切,故圓心到直線的距離,所以,,解得,故.設,則,又,故,當時取等號.故,故選A.【點睛】本題主要考查斜率的幾何意義,基本不等式的用法等.注意求斜率時需要設點斜式,利用圓心到直線的距離等于半徑列式求得斜率,在用基本不等式時要注意取等號的條件.2、A【解析】
利用誘導公式求得sinα的值,再利用同角三角函數(shù)的基本關系求得cosα,再利用二倍角公式,求得sin2α的值.【詳解】解:,且,,則,故選A.【點睛】本題主要考查利用誘導公式、同角三角函數(shù)的基本關系,二倍角公式進行化簡三角函數(shù)式,屬于基礎題.3、D【解析】
因為,所以,即;故選D.4、C【解析】
由題意可知,基本事件總數(shù)為,然后列舉出事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計算出所求事件的概率.【詳解】同時拋擲兩個骰子,共有個基本事件,事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件有:、、、、,共個基本事件.因此,所求事件的概率為.故選:C.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.5、B【解析】
根據(jù)題意,得到數(shù)列為等差數(shù)列,通過首項和公差,得到通項.【詳解】因為數(shù)列只有5項,分別是3,5,7,9,11,所以是以為首項,為公差的等差數(shù)列,.故選:B.【點睛】本題考查求等差數(shù)列的通項,屬于簡單題.6、C【解析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應選答案C.7、B【解析】根據(jù)三視圖可知幾何體是組合體:上面是半個圓錐(高為圓柱的一半),下面是半個圓柱,其中圓錐底面半徑是,高是,圓柱的底面半徑是,母線長是,所以該幾何體的體積,故選B.【方法點睛】本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響.8、D【解析】由題意,所以,因此,從而,可知不可能等于.9、D【解析】
由韋達定理確定,,利用已知條件討論成等差數(shù)列和等比數(shù)列的位置,從而確定的值.【詳解】由韋達定理得:,,所以,由題意這三個數(shù)可適當排序后成等比數(shù)列,且,則2一定在中間所以,即因為這三個數(shù)可適當排序后成等差數(shù)列,且,則2一定不在的中間假設,則即故選D【點睛】本題考查了等差數(shù)列和等比數(shù)列的基本性質(zhì),解決本題的關鍵是要掌握三個數(shù)成等差數(shù)列和等比數(shù)列的性質(zhì),如成等比數(shù)列,且,,則2必為等比中項,有.10、A【解析】
由扇形圖能得到總數(shù),利用抽樣比較能求出樣本容量;由分層抽樣和條形圖能求出抽取的高中生近視人數(shù).【詳解】用分層抽樣的方法抽取的學生進行調(diào)查,樣本容量為:,抽取的高中生近視人數(shù)為:,故選A.【點睛】該題考查的是有關概率統(tǒng)計的問題,涉及到的知識點有扇形圖與條形圖的應用,以及分層抽樣的性質(zhì),注意對基礎知識的靈活應用,屬于簡單題目.二、填空題:本大題共6小題,每小題5分,共30分。11、f【解析】分析:首先根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得到A=2,然后算出函數(shù)的周期T=π,利用周期的公式,得到ω=2,最后將點(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f詳解:根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得A=2,又∵函數(shù)的周期34T=5π將點(5π12,2)代入,得:2=2sin所以fx的解析式是f點睛:本題給出了函數(shù)y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數(shù)基本概念和函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的知識點,屬于中檔題.12、【解析】
令正弦定理化簡已知等式,得到,代入題設,求得的長,利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因為,由正弦定理,可得,因為的周長為5,即,所以,又因為,即,所以.【點睛】本題主要考查了正弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.13、行列【解析】
設位于第行第列,觀察表格中數(shù)據(jù)的規(guī)律,可得出,由此可求出的值,再觀察奇數(shù)行和偶數(shù)行最小數(shù)的排列,可得出的值,由此可得出結(jié)果.【詳解】設位于第行第列,由表格中的數(shù)據(jù)可知,第行最大的數(shù)為,則,解得,由于第行最大的數(shù)為,所以,是表格中第行最小的數(shù),由表格中的規(guī)律可知,奇數(shù)行最小的數(shù)放在第列,那么.因此,位于表格中第行第列.故答案為:行列.【點睛】本題考查歸納推理,解題的關鍵就是要結(jié)合表格中數(shù)據(jù)所呈現(xiàn)的規(guī)律來進行推理,考查推理能力,屬于中等題.14、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點睛:此題為填空題的壓軸題,實際上并不難,關鍵在于根據(jù)題意作出相應圖形,利用平面幾何知識求解相應線段長,代入圓錐體積公式即可.15、15【解析】試題分析:程序執(zhí)行中的數(shù)據(jù)變化如下:,輸出考點:程序語句16、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質(zhì)可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【點睛】本題主要考查了等差數(shù)列的性質(zhì).考查了學生創(chuàng)造性思維和解決問題的能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),最大值為.(2)時,最小值0.時,最大值.【解析】
(1)利用數(shù)量積公式、倍角公式和輔助角公式,化簡,再利用三角函數(shù)的有界性,即可得答案;(2)利用整體法求出,再利用三角函數(shù)線,即可得答案.【詳解】(1)∴,的最大值為.(2)由(1)得,∵,.,當時,即時,取最小值0.當,即時,取最大值.【點睛】本題考查向量數(shù)量積、二倍角公式、輔助角公式、三角函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意整體法的應用.18、(1)(2)【解析】
(1)由正弦定理可得,再結(jié)合余弦定理可得,再求邊長即可得解;(2)由余弦定理可得,再利用三角形面積公式求解即可.【詳解】解:(1)因為,所以,即,即,即,即,又,則,則,又,則,即,即△ABC的周長為;(2)因為,,在中,由余弦定理可得:,則,即,即,所以.【點睛】本題考查了正弦定理及余弦定理的應用,重點考查了三角形的面積公式,屬中檔題.19、(1);(2)【解析】
(1)利用正弦定理化簡,并用三角形內(nèi)角和定理以及兩角和的正弦公式化簡,求得,由此求得的大小.(2)利用三角形的面積公式求得,利用余弦定理列方程,化簡求得的值.【詳解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【點睛】本小題主要考查三角形的面積公式,考查正弦定理、余弦定理解三角形,考查運算求解能力,屬于中檔題.20、(1),;(2).【解析】分析:(1)利用的關系,求解;倒序相加求。(2)先用錯位相減求,分離參數(shù),使得對于一切的恒成立,轉(zhuǎn)化為求的最值。詳解:(1)時滿足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立對于一切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木工工藝研發(fā)與創(chuàng)新資助合同
- 2025年門禁產(chǎn)品銷售與客戶定制化解決方案合同范本3篇
- 2025年度農(nóng)藥殘留檢測技術服務合同書2篇
- 2025年度噴泉景區(qū)旅游推廣及市場營銷合同
- 艾滋病病毒王利沙HIV講解
- 2025年度宅基地使用權及房產(chǎn)繼承合同
- 2025年度旅游行業(yè)導游及服務人員派遣合同2篇
- 二零二五年度雛雞養(yǎng)殖與休閑農(nóng)業(yè)融合發(fā)展合同4篇
- 2025版民間抵押資產(chǎn)處置合同樣本3篇
- 2025年建筑行業(yè)自動化的機遇與挑戰(zhàn)
- 2024年湖南高速鐵路職業(yè)技術學院高職單招數(shù)學歷年參考題庫含答案解析
- 國旗班指揮刀訓練動作要領
- 2024年國家工作人員學法用法考試題庫及參考答案
- 國家公務員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術》課件 第6講 阻燃纖維及織物
- 2021-2022學年遼寧省重點高中協(xié)作校高一上學期期末語文試題
- 同等學力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級上冊遞等式計算100道及答案
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 2024年新課標全國Ⅰ卷語文高考真題試卷(含答案)
評論
0/150
提交評論