河南省永城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
河南省永城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
河南省永城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
河南省永城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
河南省永城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省永城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)的內(nèi)角所對(duì)的邊分別為,且,已知的面積等于,,則的值為()A. B. C. D.2.若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3.已知向量,與的夾角為,則()A.3 B.2 C. D.14.已知滿足條件,則目標(biāo)函數(shù)的最小值為A.0 B.1 C. D.5.記等差數(shù)列的前n項(xiàng)和為.若,則()A.7 B.8 C.9 D.106.素?cái)?shù)指整數(shù)在一個(gè)大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果。哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如。在不超過(guò)15的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和小于18的概率是()A. B. C. D.7.已知向量a=(2,1),a?b=10,A.5 B.10 C.5 D.258.?dāng)?shù)列為等比數(shù)列,若,,數(shù)列的前項(xiàng)和為,則A. B. C.7 D.319.在中,角,,所對(duì)的邊分別為,,,且邊上的高為,則的最大值是()A.8 B.6 C. D.410.中,角的對(duì)邊分別為,且,則角()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線平分圓的周長(zhǎng),則實(shí)數(shù)________.12.當(dāng)時(shí),的最大值為_(kāi)_________.13.設(shè)函數(shù),則的值為_(kāi)_________.14.若實(shí)數(shù)滿足,則取值范圍是____________。15.已知數(shù)列中,,,,則的值為_(kāi)____.16.如圖,長(zhǎng)方體的體積是120,E為的中點(diǎn),則三棱錐E-BCD的體積是_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.18.在銳角中角,,的對(duì)邊分別是,,,且.(1)求角的大??;(2)若,求面積的最大值.19.已知圓過(guò)兩點(diǎn),,且圓心在直線上.(1)求圓的標(biāo)準(zhǔn)方程;(2)求過(guò)點(diǎn)且與圓相切的直線方程.20.從社會(huì)效益和經(jīng)濟(jì)效益出發(fā),某地投入資金進(jìn)行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè),根據(jù)規(guī)劃,本年度投入800萬(wàn)元,以后每年投入將比上年減少,本年度當(dāng)?shù)芈糜螛I(yè)收入估計(jì)為400萬(wàn)元,由于該項(xiàng)建設(shè)對(duì)旅游業(yè)的促進(jìn)作用,預(yù)計(jì)今后的旅游業(yè)收入每年會(huì)比上年增加.(1)設(shè)年內(nèi)(本年度為第一年)總投入為萬(wàn)元,旅游業(yè)總收入為萬(wàn)元,寫出的表達(dá)式;(2)至少經(jīng)過(guò)幾年,旅游業(yè)的總收入才能超過(guò)總投入?21.等差數(shù)列中,公差,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由正弦定理化簡(jiǎn)已知,結(jié)合,可求,利用同角三角函數(shù)基本關(guān)系式可求,進(jìn)而利用三角形的面積公式即可解得的值.【詳解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面積,解得.故選:.【點(diǎn)睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.2、C【解析】

由已知可得an﹣an﹣1=2,或an=2an﹣1,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案.【詳解】∵數(shù)列{an}對(duì)任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差為2的等差數(shù)列,正確;②{an}可以是公比為2的等比數(shù)列,正確;③若{an}既是等差又是等比數(shù)列,即此時(shí)公差為0,公比為1,由①②得,③錯(cuò)誤;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,當(dāng)數(shù)列為:1,3,6,8,16……得{an}既不是等差也不是等比數(shù)列,故④正確;故選C.【點(diǎn)睛】本題以命題的真假判斷與應(yīng)用為載體,考查了等差,等比數(shù)列的相關(guān)內(nèi)容,屬于中檔題.3、C【解析】

由向量的模公式以及數(shù)量積公式,即可得到本題答案.【詳解】因?yàn)橄蛄?,與的夾角為,所以.故選:C【點(diǎn)睛】本題主要考查平面向量的模的公式以及數(shù)量積公式.4、C【解析】作出不等式區(qū)域如圖所示:求目標(biāo)函數(shù)的最小值等價(jià)于求直線的最小縱截距.平移直線經(jīng)過(guò)點(diǎn)A(-2,0)時(shí)最小為-2.故選C.5、D【解析】

由可得值,可得可得答案.【詳解】解:由,可得,所以,從而,故選D.【點(diǎn)睛】本題主要考察等差數(shù)列的性質(zhì)及等差數(shù)列前n項(xiàng)的和,由得出的值是解題的關(guān)鍵.6、B【解析】

找出不超過(guò)15的素?cái)?shù),從其中任取2個(gè)共有多少種取法,找到取出的兩個(gè)和小于18的個(gè)數(shù),根據(jù)古典概型求解即可.【詳解】不超過(guò)15的素?cái)?shù)為,共6個(gè),任取2個(gè)分別為,,,,,,,,,,,,,,,共15個(gè)基本事件,其中兩個(gè)和小于18的共有11個(gè)基本事件,根據(jù)古典概型概率公式知.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于中檔題.7、C【解析】

將|a+b8、A【解析】

先求等比數(shù)列通項(xiàng)公式,再根據(jù)等比數(shù)列求和公式求結(jié)果.【詳解】數(shù)列為等比數(shù)列,,,,解得,,數(shù)列的前項(xiàng)和為,.故選.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式與求和公式,考查基本分析求解能力,屬基礎(chǔ)題.9、D【解析】,這個(gè)形式很容易聯(lián)想到余弦定理:cosA,①而條件中的“高”容易聯(lián)想到面積,bcsinA,即a2=2bcsinA,②將②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),當(dāng)A=時(shí)取得最大值4,故選D.點(diǎn)睛:三角形中最值問(wèn)題,一般轉(zhuǎn)化為條件最值問(wèn)題:先根據(jù)正、余弦定理及三角形面積公式結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,利用基本不等式或函數(shù)方法求最值.在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.10、B【解析】

根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時(shí)平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點(diǎn)睛】此題考查利用正弦定理進(jìn)行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

由題得圓心在直線上,解方程即得解.【詳解】由題得圓心(1,a)在直線上,所以.故答案為1【點(diǎn)睛】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.12、-3.【解析】

將函數(shù)的表達(dá)式改寫為:利用均值不等式得到答案.【詳解】當(dāng)時(shí),故答案為-3【點(diǎn)睛】本題考查了均值不等式,利用一正二定三相等將函數(shù)變形是解題的關(guān)鍵.13、【解析】

根據(jù)反正切函數(shù)的值域,結(jié)合條件得出的值.【詳解】,且,因此,,故答案為:.【點(diǎn)睛】本題考查反正切值的求解,解題時(shí)要結(jié)合反正切函數(shù)的值域以及特殊角的正切值來(lái)求解,考查計(jì)算能力,屬于基礎(chǔ)題.14、;【解析】

利用三角換元,設(shè),;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設(shè),,本題正確結(jié)果:【點(diǎn)睛】本題考查利用三角換元法求解取值范圍的問(wèn)題,關(guān)鍵是能夠?qū)?wèn)題轉(zhuǎn)化為三角函數(shù)值域的求解問(wèn)題.15、1275【解析】

根據(jù)遞推關(guān)系式可求得,從而利用并項(xiàng)求和的方法將所求的和轉(zhuǎn)化為,利用等差數(shù)列求和公式求得結(jié)果.【詳解】由得:則,即本題正確結(jié)果:【點(diǎn)睛】本題考查并項(xiàng)求和法、等差數(shù)列求和公式的應(yīng)用,關(guān)鍵是能夠利用遞推關(guān)系式得到數(shù)列相鄰兩項(xiàng)之間的關(guān)系,從而采用并項(xiàng)的方式來(lái)進(jìn)行求解.16、10.【解析】

由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.【詳解】因?yàn)殚L(zhǎng)方體的體積為120,所以,因?yàn)闉榈闹悬c(diǎn),所以,由長(zhǎng)方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【點(diǎn)睛】本題蘊(yùn)含“整體和局部”的對(duì)立統(tǒng)一規(guī)律.在幾何體面積或體積的計(jì)算問(wèn)題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補(bǔ)”的方法解題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(I)利用向量數(shù)量積的運(yùn)算,化簡(jiǎn),得到,由此求得的大小.(II)先利用向量的數(shù)量積運(yùn)算,求得的值,由此求得的值.【詳解】解:(Ⅰ)因?yàn)椋裕裕驗(yàn)?,所以.(Ⅱ)因?yàn)?,由已知,,所以.所以.【點(diǎn)睛】本小題主要考查向量數(shù)量積運(yùn)算,考查向量夾角的計(jì)算,考查向量模的求法,屬于基礎(chǔ)題.18、(1)(2)【解析】

(1)由正弦定理可得,結(jié)合,可求出與;(2)由余弦定理可得,結(jié)合基本不等式可得,即可求出,從而可求出的最大值.【詳解】解:(1)因?yàn)?,所以,又,所以,又是銳角三角形,則.(2)因?yàn)?,,,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào)),故.【點(diǎn)睛】本題考查了正弦定理、余弦定理在解三角形中的運(yùn)用,考查了利用基本不等式求最值,考查了學(xué)生的計(jì)算能力,屬于中檔題.19、(1)(2)【解析】

(1)設(shè)圓心坐標(biāo)為,根據(jù),求得,進(jìn)而得到圓的方程;(2)由在圓上,則,得到,求得,進(jìn)而求得圓的切線方程.【詳解】(1)由題意,圓心在直線上,設(shè)圓心坐標(biāo)為,由,即,所以,圓心,半徑,圓的標(biāo)準(zhǔn)方程為.(2)設(shè)切線方程為,因?yàn)樵趫A上,所以,所以,又,所以,所以切線方程為,即,所以過(guò)的切線方程.【點(diǎn)睛】本題主要考查了圓的方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟記圓的方程的形式,以及圓的切線的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.20、(1),;(2)至少經(jīng)過(guò)5年,旅游業(yè)的總收入才能超過(guò)總投入.【解析】

(1)利用等比數(shù)列求和公式可求出n年內(nèi)的旅游業(yè)總收入與n年內(nèi)的總投入;(2)設(shè)至少經(jīng)過(guò)年旅游業(yè)的總收入才能超過(guò)總投入,可得->0,結(jié)合(1)可得,解得,進(jìn)而可得結(jié)果.【詳解】(1)第1年投入為800萬(wàn)元,第2年投入為800×(1-)萬(wàn)元,…第n年投入為800×(1-)n-1萬(wàn)元,所以,n年內(nèi)的總投入為=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游業(yè)收入為400萬(wàn)元,第2年旅游業(yè)收入為400×(1+),…,第n年旅游業(yè)收入400×(1+)n-1萬(wàn)元.所以,n年內(nèi)的旅游業(yè)總收入為=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)設(shè)至少經(jīng)過(guò)n年旅游業(yè)的總收入才能超過(guò)總投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少經(jīng)過(guò)5年,旅游業(yè)的總收入才能超過(guò)總投入.【點(diǎn)睛】本題主要考查閱讀能力及建模能力、等比數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論