版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
萍鄉(xiāng)市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知點(diǎn)在第二象限,角頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為軸的非負(fù)半軸,則角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知數(shù)列滿足,,則()A. B. C. D.3.一幾何體的三視圖如圖所示,則該幾何體的表面積為()A.16 B.20 C.24 D.284.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為()A. B. C. D.5.已知向量,且,則m=()A.?8 B.?6C.6 D.86.某中學(xué)舉行英語演講比賽,如圖是七位評委為某位學(xué)生打出分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)分別為()A.84,85 B.85,84 C.84,85.2 D.86,857.函數(shù)f(x)=sinA.1 B.2 C.3 D.28.若偶函數(shù)在上是增函數(shù),則()A. B.C. D.不能確定9.若,則以下不等式一定成立的是()A. B. C. D.10.圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量a=(2,-4),b=(-3,-4),則向量a與12.用列舉法表示集合__________.13.設(shè),,則______.14.已知向量,,則的最大值為_______.15.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).16.若,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.18.已知f(α)=,其中α≠kπ(k∈Z).(1)化簡f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.19.如圖,已知中,.設(shè),,它的內(nèi)接正方形的一邊在斜邊上,、分別在、上.假設(shè)的面積為,正方形的面積為.(Ⅰ)用表示的面積和正方形的面積;(Ⅱ)設(shè),試求的最大值,并判斷此時(shí)的形狀.20.已知邊長為2的等邊,是邊的中點(diǎn),以為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)得對應(yīng),與所在直線交于.(1)任意旋轉(zhuǎn)角,判斷是否是定值.若是,求此定值;若不是,說明理由.(2)求的最小值.21.已知數(shù)列前n項(xiàng)和,點(diǎn)在函數(shù)的圖象上.(1)求的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,不等式對任意的正整數(shù)恒成立,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)點(diǎn)的位置,得到不等式組,進(jìn)行判斷角的終邊落在的位置.【詳解】點(diǎn)在第二象限在第三象限,故本題選C.【點(diǎn)睛】本題考查了通過角的正弦值和正切值的正負(fù)性,判斷角的終邊位置,利用三角函數(shù)的定義是解題的關(guān)鍵.2、A【解析】
由給出的遞推式變形,構(gòu)造出新的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式求出的表達(dá)式,再利用等比數(shù)列的求和公式求解即可.【詳解】解:解:在數(shù)列中,
由,得,
,
,
則數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,
.,故選:A.【點(diǎn)睛】本題考查了數(shù)列的遞推式,考查了等比關(guān)系的確定以及等比數(shù)列的求和公式,屬中檔題.3、B【解析】
根據(jù)三視圖可還原幾何體,根據(jù)長度關(guān)系依次計(jì)算出各個(gè)側(cè)面和上下底面的面積,加和得到表面積.【詳解】有三視圖可得幾何體的直觀圖如下圖所示:其中:,,,則:,,,,幾何體表面積:本題正確選項(xiàng):【點(diǎn)睛】本題考查幾何體表面積的求解問題,關(guān)鍵是能夠根據(jù)三視圖準(zhǔn)確還原幾何體,從而根據(jù)長度關(guān)系可依次計(jì)算出各個(gè)面的面積.4、A【解析】
在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為.【詳解】根據(jù)對稱性,點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為.故選A.【點(diǎn)睛】本題考查空間直角坐標(biāo)系和點(diǎn)的對稱,屬于基礎(chǔ)題.5、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.6、A【解析】
剩余數(shù)據(jù)為:84.84,86,84,87,計(jì)算中位數(shù)和平均數(shù).【詳解】剩余數(shù)據(jù)為:84.84,86,84,87則中位數(shù)為:84平均數(shù)為:故答案為A【點(diǎn)睛】本題考查了中位數(shù)和平均數(shù)的計(jì)算,屬于基礎(chǔ)題型.7、A【解析】
對sin(x+π3【詳解】∵f(x)=sin∴f(x)【點(diǎn)睛】考查三角恒等變換、輔助角公式及余弦函數(shù)的最值.8、B【解析】
根據(jù)偶函數(shù)性質(zhì)與冪函數(shù)性質(zhì)可得.【詳解】偶函數(shù)在上是增函數(shù),則它在上是減函數(shù),所以.故選:B.【點(diǎn)睛】本題考查冪函數(shù)的性質(zhì),考查偶函數(shù)性質(zhì),屬于基礎(chǔ)題.9、C【解析】
利用不等式的運(yùn)算性質(zhì)分別判斷,正確的進(jìn)行證明,錯(cuò)誤的舉出反例.【詳解】沒有確定正負(fù),時(shí),,所以不選A;當(dāng)時(shí),,所以不選B;當(dāng)時(shí),,所以不選D;由,不等式成立.故選C.【點(diǎn)睛】本題考查不等式的運(yùn)算性質(zhì),比較法證明不等式,屬于基本題.10、D【解析】
根據(jù)圓錐的體積求出底面圓的半徑和高,求出母線長,即可計(jì)算圓錐的表面積.【詳解】圓錐的高和底面半徑之比,∴,又圓錐的體積,即,解得;∴,母線長為,則圓錐的表面積為.故選:D.【點(diǎn)睛】本題考查圓錐的體積和表面積公式,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】
先求出a?b,再求【詳解】由題得a所以向量a與b夾角的余弦值為cosα=故答案為5【點(diǎn)睛】(1)本題主要考查向量的夾角的計(jì)算,意在考查學(xué)生對該知識的掌握水平和分析推理計(jì)算能力.(2)求兩個(gè)向量的夾角一般有兩種方法,方法一:cos<a,b>=a·bab,方法二:設(shè)a=(x1,y12、【解析】
先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【詳解】因?yàn)椋?,又因?yàn)?,所以,此時(shí)或,則可得集合:.【點(diǎn)睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.13、【解析】
由,根據(jù)兩角差的正切公式可解得.【詳解】,故答案為【點(diǎn)睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識的考查.14、.【解析】
計(jì)算出,利用輔助角公式進(jìn)行化簡,并求出的最大值,可得出的最大值.【詳解】,,,所以,,當(dāng)且僅當(dāng),即當(dāng),等號成立,因此,的最大值為,故答案為.【點(diǎn)睛】本題考查平面向量模的最值的計(jì)算,涉及平面向量數(shù)量積的坐標(biāo)運(yùn)算以及三角恒等變換思想的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.15、<【解析】
直接利用作差比較法解答.【詳解】由題得,因?yàn)閍>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【點(diǎn)睛】本題主要考查作差比較法,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.16、;【解析】
把分子的1換成,然后弦化切,代入計(jì)算.【詳解】.故答案為-1.【點(diǎn)睛】本題考查三角函數(shù)的化簡求值.解題關(guān)鍵是“1”的代換,即,然后弦化切.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題可得,解出,,進(jìn)而得出答案.(2)由題可得,,再由計(jì)算得出答案,【詳解】因?yàn)椋?,即解得所以?)若,則所以,,,所以【點(diǎn)睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.18、(1)(2)【解析】
(1)直接利用三角函數(shù)的誘導(dǎo)公式,化簡運(yùn)算,即可求解;(2)由,得,進(jìn)一步求得,得到sin2與cos2,再由sin(2+)展開兩角和的正弦求解.【詳解】(1)由題意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【點(diǎn)睛】本題主要考查了三角函數(shù)的化簡求值,及誘導(dǎo)公式及兩角差的正弦公式的應(yīng)用,其中解答中熟記三家函數(shù)的恒等變換的公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(Ⅰ),;,(Ⅱ)最大值為;為等腰直角三角形【解析】
(Ⅰ)根據(jù)直角三角形,底面積乘高是面積;然后考慮正方形的邊長,求出邊長之后,即可表示正方形面積;(Ⅱ)化簡的表達(dá)式,利用基本不等式求最值,注意取等號的條件.【詳解】解:(Ⅰ)∵在中,∴,.∴∴,設(shè)正方形邊長為,則,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在區(qū)間上是減函數(shù)∴當(dāng)時(shí),取得最小值,即取得最大值?!嗟淖畲笾禐榇藭r(shí)∴為等腰直角三角形【點(diǎn)睛】(1)函數(shù)的實(shí)際問題中,不僅要根據(jù)條件列出函數(shù)解析式時(shí),同時(shí)還要注意定義域;(2)求解函數(shù)的最值的時(shí)候,當(dāng)取到最值時(shí),一定要添加增加取等號的條件.20、(1)是,0;(2).【解析】
(1)以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸建立平面直角坐標(biāo)系,得出的坐標(biāo),計(jì)算得出,進(jìn)而得出;(2)根據(jù)得出點(diǎn)的軌跡是以為直徑的圓,由圓的對稱性得出的最小值.【詳解】(1)以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸建立平面直角坐標(biāo)系則,即∴設(shè),則所以為定值,定值為(2)由(1)知,故在以為直徑的圓上設(shè)的中點(diǎn),則,以為直徑的圓的半徑由圓的對稱性可知,的最小值是.【點(diǎn)睛】本題主要考查了計(jì)算向量的數(shù)量積以及圓對稱性的應(yīng)用,屬于中檔題.21、(1);(2).【解析】試題分析:(1)將點(diǎn)的坐標(biāo)代入函數(shù)的方程得到.利用,可求得數(shù)列的通項(xiàng)公式為.(2)利用裂項(xiàng)求和法求得.為遞增的數(shù)列,當(dāng)時(shí)有最小值為,所以,解得.試題解析:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年物流信息化建設(shè)合同3篇
- 二零二五年度食品加工及品牌貼牌銷售合同4篇
- 二零二五年度商業(yè)地產(chǎn)租賃居間代理合同6篇
- 2025年度存量房買賣合同貸款擔(dān)保服務(wù)合同4篇
- 停車車位租賃合同
- 2025年度存款居間擔(dān)??缇辰鹑诜?wù)合同4篇
- 股份合作協(xié)議:四人合伙合同(2025版)3篇
- 地產(chǎn)公司二零二五年度勞動合同與員工帶薪休假及調(diào)休規(guī)定3篇
- 2025年度采石場綠色礦山建設(shè)咨詢合同3篇
- 二零二四年度醫(yī)療設(shè)備采購與設(shè)備更新淘汰合同3篇
- 2024年安全教育培訓(xùn)試題附完整答案(奪冠系列)
- 神農(nóng)架研學(xué)課程設(shè)計(jì)
- 斷絕父子關(guān)系協(xié)議書
- 福建省公路水運(yùn)工程試驗(yàn)檢測費(fèi)用參考指標(biāo)
- 《工程勘察資質(zhì)分級標(biāo)準(zhǔn)和工程設(shè)計(jì)資質(zhì)分級標(biāo)準(zhǔn)》
- 小學(xué)語文閱讀教學(xué)落實(shí)學(xué)生核心素養(yǎng)方法的研究-中期報(bào)告
- 眼內(nèi)炎患者護(hù)理查房課件
- 唯物史觀課件
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 中國傳統(tǒng)文化服飾文化
- 大氣污染控制工程 第四版
評論
0/150
提交評論