版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省皖西南聯(lián)盟2025屆高一下數(shù)學(xué)期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則使函數(shù)的定義域是,且為偶函數(shù)的所有的值是()A.0,2 B.0,-2 C. D.22.在等差數(shù)列中,,則等于()A.5 B.6 C.7 D.83.函數(shù)的圖像與函數(shù),的圖像的交點個數(shù)為()A. B. C. D.4.?dāng)?shù)列為等比數(shù)列,若,,數(shù)列的前項和為,則A. B. C.7 D.315.已知函數(shù)與的圖象上存在關(guān)于軸對稱的點,則實數(shù)的取值范圍是().A. B. C. D.6.若關(guān)于的方程有且只有兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B. C. D.7.已知扇形的周長為8,圓心角為2弧度,則該扇形的面積為()A. B. C. D.8.在中,已知,且,則的值是()A. B. C. D.9.已知,,且,則向量在向量上的投影等于()A.-4 B.4 C. D.10.已知弧度數(shù)為2的圓心角所對的弦長也是2,則這個圓心角所對的弧長是()A.2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點,,若直線與線段有公共點,則實數(shù)的取值范圍是____________.12.終邊在軸上的角的集合是_____________________.13.在四面體中,平面ABC,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.14.已知變量x,y線性相關(guān),其一組數(shù)據(jù)如下表所示.若根據(jù)這組數(shù)據(jù)求得y關(guān)于x的線性回歸方程為,則______.x1245y5.49.610.614.415.函數(shù)的反函數(shù)為__________.16.執(zhí)行右邊的程序框圖,若輸入的是,則輸出的值是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知分別為三個內(nèi)角的對邊長,且(1)求角的大??;(2)若,求面積的最大值.18.某菜農(nóng)有兩段總長度為米的籬笆及,現(xiàn)打算用它們和兩面成直角的墻、圍成一個如圖所示的四邊形菜園(假設(shè)、這兩面墻都足夠長)已知(米),,,設(shè),四邊形的面積為.(1)將表示為的函數(shù),并寫出自變量的取值范圍;(2)求出的最大值,并指出此時所對應(yīng)的值.19.假設(shè)關(guān)于某設(shè)備的使用年限x和支出的維修費y(萬元)有如下表的統(tǒng)計資料(1)畫出數(shù)據(jù)的散點圖,并判斷y與x是否呈線性相關(guān)關(guān)系(2)若y與x呈線性相關(guān)關(guān)系,求線性回歸方程的回歸系數(shù),(3)估計使用年限為10年時,維修費用是多少?參考公式及相關(guān)數(shù)據(jù):20.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.21.在相同條件下對自行車運動員甲?乙兩人進(jìn)行了6次測試,測得他們的最大速度(單位:)的數(shù)據(jù)如下:甲273830373531乙332938342836試判斷選誰參加某項重大比賽更合適.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)冪函數(shù)的性質(zhì),結(jié)合題中條件,即可得出結(jié)果.【詳解】若函數(shù)的定義域是,則;又函數(shù)為偶函數(shù),所以只能使偶數(shù);因為,所以能取的值為2.故選D【點睛】本題主要考查冪函數(shù)性質(zhì)的應(yīng)用,熟記冪函數(shù)的性質(zhì)即可,屬于??碱}型.2、C【解析】
由數(shù)列為等差數(shù)列,當(dāng)時,有,代入求解即可.【詳解】解:因為數(shù)列為等差數(shù)列,又,則,又,則,故選:C.【點睛】本題考查了等差數(shù)列的性質(zhì),屬基礎(chǔ)題.3、A【解析】
在同一坐標(biāo)系中畫出兩函數(shù)的圖象,根據(jù)圖象得到交點個數(shù).【詳解】可得兩函數(shù)圖象如下圖所示:兩函數(shù)共有個交點本題正確選項:【點睛】本題考查函數(shù)交點個數(shù)的求解,關(guān)鍵是能夠根據(jù)兩函數(shù)的解析式,通過平移和翻折變換等知識得到函數(shù)的圖象,采用數(shù)形結(jié)合的方式得到結(jié)果.4、A【解析】
先求等比數(shù)列通項公式,再根據(jù)等比數(shù)列求和公式求結(jié)果.【詳解】數(shù)列為等比數(shù)列,,,,解得,,數(shù)列的前項和為,.故選.【點睛】本題考查等比數(shù)列通項公式與求和公式,考查基本分析求解能力,屬基礎(chǔ)題.5、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對稱的點,則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,故當(dāng)x=1時,g(x)取最小值﹣2,當(dāng)x=2時,函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點睛:圖像上存在關(guān)于軸對稱的點,即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉(zhuǎn)化為方程有解求參的問題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點即可;這是解決方程有解,圖像有交點,函數(shù)有零點的常見方法。6、B【解析】
方程化為,可轉(zhuǎn)化為半圓與直線有兩個不同交點,作圖后易得.【詳解】由得由題意半圓與直線有兩個不同交點,直線過定點,作出半圓與直線,如圖,當(dāng)直線過時,,,當(dāng)直線與半圓相切(位置)時,由,解得.所以的取值范圍是.故選:B.【點睛】本題考查方程根的個數(shù)問題,把問題轉(zhuǎn)化為直線與半圓有兩個交點后利用數(shù)形結(jié)合思想可以方便求解.7、A【解析】
利用弧長公式、扇形的面積計算公式即可得出.【詳解】設(shè)此扇形半徑為r,扇形弧長為l=2r則2r+2r=8,r=2,∴扇形的面積為r=故選A【點睛】本題考查了弧長公式、扇形的面積計算公式,屬于基礎(chǔ)題.8、C【解析】
由正弦定理邊角互化思想得,由可得出的三邊長,可判斷出三角形的形狀,由此可得出的值,再利用平面向量數(shù)量積的定義可計算出的值.【詳解】,,,,,,為等腰直角三角形,.因此,,故選C.【點睛】本題考查正弦定理邊角互化思想的應(yīng)用,同時也考查了平面向量數(shù)量積定義的計算,在求平面向量數(shù)量積的計算時,要注意向量的起點要一致,考查運算求解能力,屬于中等題.9、A【解析】
根據(jù)公式,向量在向量上的投影等于,計算求得結(jié)果.【詳解】向量在向量上的投影等于.故選A.【點睛】本題考查了向量的投影公式,只需記住公式代入即可,屬于基礎(chǔ)題型.10、B【解析】
先由已知條件求出扇形的半徑為,再結(jié)合弧長公式求解即可.【詳解】解:設(shè)扇形的半徑為,由弧度數(shù)為2的圓心角所對的弦長也是2,可得,由弧長公式可得:這個圓心角所對的弧長是,故選:B.【點睛】本題考查了扇形的弧長公式,重點考查了運算能力,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)直線方程可確定直線過定點;求出有公共點的臨界狀態(tài)時的斜率,即和;根據(jù)位置關(guān)系可確定的范圍.【詳解】直線可整理為:直線經(jīng)過定點,又直線的斜率為的取值范圍為:本題正確結(jié)果:【點睛】本題考查根據(jù)直線與線段的交點個數(shù)求解參數(shù)范圍的問題,關(guān)鍵是能夠明確直線經(jīng)過的定點,從而確定臨界狀態(tài)時的斜率.12、【解析】
由于終邊在y軸的非負(fù)半軸上的角的集合為而終邊在y軸的非正半軸上的角的集合為,終邊在軸上的角的集合是,所以,故答案為.13、【解析】
設(shè),再根據(jù)外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形求解進(jìn)而求得體積即可.【詳解】設(shè),底面外接圓直徑為.易得底面是邊長為3的等邊三角形.則由正弦定理得.又外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形有.又外接球的表面積為,即.解得.故四面體體積為.故答案為:【點睛】本題主要考查了側(cè)棱垂直于底面的四面體的外接球問題.需要根據(jù)題意建立底面三角形外接圓的直徑和三棱錐的高與外接球直徑的關(guān)系再求解.屬于中檔題.14、4.3【解析】
由所給數(shù)據(jù)求出,根據(jù)回歸直線過中心點可求解.【詳解】由表格得到,,將樣本中心代入線性回歸方程得.故答案為:4.3【點睛】本題考查線性回歸直線方程,掌握回歸直線的性質(zhì)是解題關(guān)鍵,即回歸直線必過中心點.15、【解析】
由得,即,把與互換即可得出【詳解】由得所以把與互換,可得故答案為:【點睛】本題考查的是反函數(shù)的求法,較簡單.16、24【解析】
試題分析:根據(jù)框圖的循環(huán)結(jié)構(gòu),依次;;;.跳出循環(huán)輸出.考點:算法程序框圖.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理、三角形內(nèi)角和定理、兩角和的正弦公式,特殊角的三角函數(shù)值,化簡等式進(jìn)行求解即可(2)根據(jù)余弦定理,結(jié)合三角形面積公式、重要不等式進(jìn)行求解即可【詳解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面積的最大值為【點睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了重要不等式,考查了兩角和的正弦公式,考查了數(shù)學(xué)運算能力.18、(1),其中;(2)當(dāng)時,取得最大值.【解析】
(1)在中,利用正弦定理將、用表示,然后利用三角形的面積公式可求出關(guān)于的表達(dá)式,結(jié)合實際問題求出的取值范圍;(2)利用(1)中的關(guān)于的表達(dá)式得出的最大值,并求出對應(yīng)的的值.【詳解】(1)在中,由正弦定理得,所以,,則的面積為,因此,,其中;(2)由(1)知,.,,當(dāng)時,即當(dāng)時,四邊形的面積取得最大值.【點睛】本題考查了正弦定理、三角形的面積公式、兩角和與差的正弦公式、二倍角公式以及三角函數(shù)的基本性質(zhì),在利用三角函數(shù)進(jìn)行求解時,要利用三角恒等變換思想將三角函數(shù)解析式化簡,考查推理能力與計算能力,屬于中等題.19、(1)見解析;(2),;(3)12.38萬元【解析】
(1)在坐標(biāo)系中畫出5個離散的點;(2)利用最小二乘法求出,再利用回歸直線過散點圖的中心,求出;(3)將代入(2)中的回歸直線方程,求得.【詳解】(1)散點圖如下:所以從散點圖年,它們具有線性相關(guān)關(guān)系.(2),,于是有,.(3)回歸直線方程是當(dāng)時,(萬元),即估計使用年限為10年時,維修費用是萬元.【點睛】本題考查散點圖的作法、最小二乘法求回歸直線方程及利用回歸直線預(yù)報當(dāng)時,的值,考查數(shù)據(jù)處理能力.20、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解析】
(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【詳解】(1)①因為,成立,所以,故,0具有“性質(zhì)2”②因為,設(shè),則設(shè),對稱軸為,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以當(dāng)時,不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因為,1具有“性質(zhì)2”所以化簡得解得或.因為存在及,使得成立,所以存在及使即可.令,則,當(dāng)時,,所以在上是增函數(shù),所以時,,當(dāng)時,,故時,因為在上單調(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實數(shù)中,一定存在兩個實數(shù),滿足:.證明:由,令,由萬能公式知,將等分成2018個小區(qū)間,則這2019個數(shù)必然有兩個數(shù)落在同一個區(qū)間,令其為:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 函數(shù)的奇偶性的說課稿
- 上市公司員工購房合同范本
- 轉(zhuǎn)口貿(mào)易合同中運輸條款
- 辦公大樓浮雕施工合同
- 物業(yè)公司財務(wù)內(nèi)控手冊
- 城市公園綠化招投標(biāo)報名表
- 活動攝像租賃簡易合同
- 餐飲KTV音響系統(tǒng)設(shè)備協(xié)議
- 航運服務(wù)招投標(biāo)專用合同條款
- 體育館消防工程合同
- 意識形態(tài)知識培訓(xùn)課
- 個人開車與單位免責(zé)協(xié)議書
- 四川公務(wù)員考試(公共基礎(chǔ)知識)真題試卷匯編1
- 《護(hù)理文書書寫》課件
- 廣東省廣州市海珠區(qū)2024-2025學(xué)年三年級上學(xué)期月考英語試卷
- 2023年北京市重點校初三(上)期末歷史試題匯編:第一次工業(yè)革命
- 《最后一片葉子》課件
- 2024年小轎車買賣合同標(biāo)準(zhǔn)版本(三篇)
- 八年級生物中考備考計劃
- 2024-2030年全球及中國濕巾和衛(wèi)生紙行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 公務(wù)員2019年國考《申論》真題及答案(省級)
評論
0/150
提交評論