版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省應縣第一中學2025屆高一下數(shù)學期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知x?y的取值如下表:x0134y2.24.34.86.7從散點圖可以看出y與x線性相關,且回歸方程,則當時,估計y的值為()A.7.1 B.7.35 C.7.95 D.8.62.《九章算術》中有這樣一個問題:今有竹九節(jié),欲均減容之(其意為:使容量均勻遞減),上三節(jié)容四升,下三節(jié)容二升,中三節(jié)容幾何?()A.二升 B.三升 C.四升 D.五升3.已知是定義在上的奇函數(shù),當時,,那么不等式的解集是()A. B.C. D.4.若實數(shù)a>b,則下列結論成立的是()A.a2>b2 B. C.ln2a>ln2b D.ax2>bx25.函數(shù)(其中為自然對數(shù)的底數(shù))的圖象大致為()A. B. C. D.6.直線在軸上的截距為()A. B. C. D.7.已知角是第三象限的角,則角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角8.某船從處向東偏北方向航行千米后到達處,然后朝西偏南的方向航行6千米到達處,則處與處之間的距離為()A.千米 B.千米 C.3千米 D.6千米9.在中,內角、、所對的邊分別為、、,且,則下列關于的形狀的說法正確的是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定10.在中,角所對的邊分別為,若,,,則等于()A.4 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設,且,則的取值范圍是______.12.在正數(shù)數(shù)列an中,a1=1,且點an,an-113.在等比數(shù)列中,,公比,若,則達到最大時n的值為____________.14.已知正實數(shù)滿足,則的最大值為_______.15.直線和將單位圓分成長度相等的四段弧,則________.16.函數(shù)的最小正周期為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.18.如圖,在邊長為2菱形ABCD中,,且對角線AC與BD交點為O.沿BD將折起,使點A到達點的位置.(1)若,求證:平面ABCD;(2)若,求三棱錐體積.19.在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項和為Sn.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{}的前n項和Tn,并證明Tn<.20.對于函數(shù)和實數(shù),若存在,使成立,則稱為函數(shù)關于的一個“生長點”.若為函數(shù)關于的一個“生長點”,則______.21.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調遞增區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
計算,,代入回歸方程計算得到,再計算得到答案.【詳解】,,故,解得.當,.故選:【點睛】本題考查了回歸方程的應用,意在考查學生的計算能力.2、B【解析】
由題意可得,上、中、下三節(jié)的容量成等差數(shù)列.再利用等差數(shù)列的性質,求出中三節(jié)容量,即可得到答案.【詳解】由題意,上、中、下三節(jié)的容量成等差數(shù)列,上三節(jié)容四升,下三節(jié)容二升,則中三節(jié)容量為,故選B.【點睛】本題主要考查了等差數(shù)列的性質的應用,其中解答中熟記等差數(shù)列的等差中項公式是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.3、B【解析】
根據奇函數(shù)的性質求出的解析式,然后分類討論求出不等式的解集.【詳解】因為是定義在上的奇函數(shù),所以有,顯然是不等式的解集;當時,;當時,,綜上所述:不等式的解集是,故本題選B.【點睛】本題考查了利用奇函數(shù)性質求解不等式解集問題,考查了分類思想,正確求出函數(shù)的解析式是解題的關鍵.4、C【解析】
特值法排除A,B,D,單調性判斷C【詳解】由題意,可知:對于A:當a、b都是負數(shù)時,很明顯a2<b2,故選項A不正確;對于B:當a為正數(shù),b為負數(shù)時,則有,故選項B不正確;對于C:∵a>b,∴2a>2b>0,∴l(xiāng)n2a>ln2b,故選項C正確;對于D:當x=0時,結果不成立,故選項D不正確;故選:C.【點評】本題主要考查不等式的性質應用,特殊值技巧的應用,指數(shù)函數(shù)、對數(shù)函數(shù)值大小的比較.本題屬中檔題.5、C【解析】
由題意,可知,即為奇函數(shù),排除,,又時,,可排除D,即可選出正確答案.【詳解】由題意,函數(shù)定義域為,且,即為奇函數(shù),排除,,當時,,,即時,,可排除D,故選C.【點睛】本題考查了函數(shù)圖象的識別,考查了函數(shù)奇偶性的運用,屬于中檔題.6、A【解析】
取計算得到答案.【詳解】直線在軸上的截距:取故答案選A【點睛】本題考查了直線的截距,屬于簡單題.7、D【解析】
可采取特殊化的思路求解,也可將各象限分成兩等份,再從x軸正半軸起,逆時針依次將各區(qū)域標上一?二?三?四,則標有三的即為所求區(qū)域.【詳解】(方法一)取,則,此時角為第二象限的角;取,則,此時角為第四象限的角.(方法二)如圖,先將各象限分成兩等份,再從x軸正半軸起,逆時針依次將各區(qū)域標上一?二?三?四,則標有三的區(qū)域即為角的終邊所在的區(qū)域,故角為第二或第四象限的角.故選:D【點睛】本題主要考查了根據所在象限求所在象限的方法,屬于中檔題.8、B【解析】
通過余弦定理可得答案.【詳解】設處與處之間的距離為千米,由余弦定理可得,則.【點睛】本題主要考查余弦定理的實際應用,難度不大.9、B【解析】
利用三角形的正、余弦定理判定.【詳解】在中,內角、、所對的邊分別為、、,且,由正弦定理得,得,則,為直角三角形.故選B【點睛】本題考查了三角形正弦定理的應用,屬于基礎題.10、B【解析】
根據正弦定理,代入數(shù)據即可。【詳解】由正弦定理,得:,即,即:解得:選B?!军c睛】此題考查正弦定理:,代入數(shù)據即可,屬于基礎題目。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
通過可求得x的取值范圍,接著利用反正弦函數(shù)的定義可得的取值范圍.【詳解】,,即.由反正弦函數(shù)的定義可得,即的取值范圍為.故答案為:.【點睛】本題主要考查余弦函數(shù)的定義域和值域,反正弦函數(shù)的定義,屬于基礎題.12、2【解析】
在正數(shù)數(shù)列an中,由點an,an-1在直線x-2y=0上,知a【詳解】由題意,在正數(shù)數(shù)列an中,a1=1,且a可得an-2即an因為a1=1,所以數(shù)列所以Sn故答案為2n【點睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的前n項和公式的應用,同時涉及到數(shù)列與解析幾何的綜合運用,是一道好題.解題時要認真審題,仔細解答,注意等比數(shù)列的前n項和公式和通項公式的靈活運用,著重考查了推理與運算能力,屬于中檔試題.13、7【解析】
利用,得的值【詳解】因為,,所以為7.故答案為:7【點睛】本題考查等比數(shù)列的項的性質及單調性,找到與1的分界是關鍵,是基礎題14、【解析】
對所求式子平邊平方,再將代入,從而將問題轉化為求【詳解】∵∵,∴,∴,等號成立當且僅當.故答案為:.【點睛】本題考查條件等式下利用基本不等式求最值,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意等號成立的條件.15、0【解析】
將單位圓分成長度相等的四段弧,每段弧對應的圓周角為,計算得到答案.【詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應的圓周角為或故答案為0【點睛】本題考查了直線和圓相交問題,判斷每段弧對應的圓周角為是解題的關鍵.16、【解析】試題分析:,所以函數(shù)的周期等于考點:1.二倍角降冪公式;2.三角函數(shù)的周期.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題可得,解出,,進而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.18、(1)見解析(2)【解析】
(1)證明與即可.(2)法一:證明平面,再過點做垂足為,證明為三棱錐的高再求解即可.法二:通過進行轉化求解即可.法三:通過進行轉化求解即可.【詳解】證明:(1)∵在菱形ABCD中,,,AC與BD交于點O.以BD為折痕,將折起,使點A到達點的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中點,則且,因為且,,所以平面,過點做垂足為,則平面BCD,又∴,解得,∴三棱錐體積.(法二):因為,,取AC中點E,,,,又(法三)因為且,,所以平面,,所以.【點睛】本題主要考查了線面垂直的證明與錐體體積的求解方法等.需要根據題意找到合適的底面與高,或者利用割補法求解體積.屬于中檔題.19、(1)(2)見解析【解析】
(1)等差數(shù)列{an}的公差設為d,運用等差數(shù)列的通項公式,解方程可得首項和公差,進而得到所求通項公式;(2)運用等差數(shù)列的求和公式,求得(),再由數(shù)列的裂項相消求和可得Tn,再由不等式的性質即可得證.【詳解】(1)等差數(shù)列{an}的公差設為d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,則an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n項和Tn(1)(1)().【點睛】本題考查等差數(shù)列的通項公式和求和公式的運用,以及數(shù)列的裂項相消求和,考查方程思想和運算能力,屬于中檔題.20、【解析】
由為函數(shù)關于的一個“生長點”,得到由誘導公式可得答案.【詳解】解:為函數(shù)關于的一個“生長點”,,故答案為:.【點睛】本題主要考查利用誘導公式進行化簡求值,及函數(shù)的創(chuàng)新題型,屬于中檔題.21、(Ⅰ)(Ⅱ)().【解析】試題分析:(Ⅰ)運用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據函數(shù)y=sinx的單調遞增區(qū)間對應求解即可.試題解析:(Ⅰ)因為,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調遞增區(qū)間為().由,得.所以的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款協(xié)議模板
- 幼兒園圖書角建設訂購合同
- 貸款保證金協(xié)議書
- 補充合同內容格式
- 購房合同糾紛案件起訴狀樣本
- 促銷裝批發(fā)銷售合同
- 宿州輸送機招標指南
- 電子政務應用開發(fā)
- 銀行抵押權對房屋買賣合同的影響分析
- 鄉(xiāng)鎮(zhèn)保證書憑證
- 《4.3用一元一次方程解決問題》教學設計
- 收二手貴重物品協(xié)議書范文
- 人教版七年級生物上冊第二單元第一章第二節(jié)種子植物課件
- 大學生心理健康教育(中南大學版)學習通超星期末考試答案章節(jié)答案2024年
- 塔吊試題(有答案)201506
- 醫(yī)用氧氣安全培訓課件
- 人教版(2024新版)七年級上冊英語Unit 5單元測試卷(含答案)
- 第16講含參單調性討論、極值和最值(原卷版+解析)
- 浙教版(2023)五下信息科技第14課《循環(huán)結構(二)》教學設計
- 外研版(2019)必修第一冊 Unit 6 At One with Nature Developing ideas 教學設計
- 4.1常見地貌類型(含答案)-高一地理人教版(2019)必修第一冊
評論
0/150
提交評論