版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州市高級中學(xué)2025屆數(shù)學(xué)高一下期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校進行了一次消防安全知識競賽,參賽學(xué)生的得分經(jīng)統(tǒng)計得到如圖的頻率分布直方圖,若得分在的有60人,則參賽學(xué)生的總?cè)藬?shù)為()A.100 B.120 C.150 D.2002.設(shè)等差數(shù)列的前項和為,,,則()A. B. C. D.3.已知向量,,,則實數(shù)的值為()A. B. C.2 D.34.直線的傾斜角不可能為()A. B. C. D.5.已知等差數(shù)列中,若,則取最小值時的()A.9 B.8 C.7 D.66.已知函數(shù),則在上的單調(diào)遞增區(qū)間是()A. B. C. D.7.設(shè)點M是直線上的一個動點,M的橫坐標為,若在圓上存在點N,使得,則的取值范圍是()A. B. C. D.8.如圖,在正方體,點在線段上運動,則下列判斷正確的是()①平面平面②平面③異面直線與所成角的取值范圍是④三棱錐的體積不變A.①② B.①②④ C.③④ D.①④9.已知方程表示焦點在y軸上的橢圓,則m的取值范圍是()A. B. C. D.10.若,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列四個命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對任意的實數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個命題中正確的有_________(填寫所有正確命題的序號)12.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.13.已知直線與圓相交于兩點,則______.14.由正整數(shù)組成的數(shù)列,分別為遞增的等差數(shù)列、等比數(shù)列,,記,若存在正整數(shù)()滿足,,則__________.15.已知銳角、滿足,,則的值為______.16.若直線:與直線的交點位于第一象限,則直線的傾斜角的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足.證明數(shù)列為等差數(shù)列;求數(shù)列的通項公式.18.設(shè)函數(shù).(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若,求函數(shù)的值域.19.如圖,在中,,點在邊上,(1)求的度數(shù);(2)求的長度.20.已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.21.為了了解高一學(xué)生的體能狀況,某校抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.(1)求第二小組的頻率;(2)求樣本容量;(3)若次數(shù)在110以上為達標,試估計全體高一學(xué)生的達標率為多少?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)頻率分布直方圖求出得分在的頻率,即可得解.【詳解】根據(jù)頻率分布直方圖可得:得分在的頻率0.35,得分在的頻率0.3,得分在的頻率0.2,得分在的頻率0.1,所以得分在的頻率0.05,得分在的頻率為0.4,有60人,所以參賽學(xué)生的總?cè)藬?shù)為60÷0.4=150人.故選:C【點睛】此題考查根據(jù)頻率分布直方圖求某組的頻率,根據(jù)頻率分布直方圖的特征計算小矩形的面積,根據(jù)總面積之和為1計算未知數(shù),結(jié)合頻率頻數(shù)計算總?cè)藬?shù).2、A【解析】
利用等差數(shù)列的基本量解決問題.【詳解】解:設(shè)等差數(shù)列的公差為,首項為,因為,,故有,解得,,故選A.【點睛】本題考查了等差數(shù)列的通項公式與前項和公式,解決問題的關(guān)鍵是熟練運用基本量法.3、A【解析】
將向量的坐標代入中,利用坐標相等,即可得答案.【詳解】∵,∴.故選:A.【點睛】本題考查向量相等的坐標運算,考查運算求解能力,屬于基礎(chǔ)題.4、D【解析】
根據(jù)直線方程,分類討論求得直線的斜率的取值范圍,進而根據(jù)傾斜角和斜率的關(guān)系,即可求解,得到答案.【詳解】由題意,可得當(dāng)時,直線方程為,此時傾斜角為;當(dāng)時,直線方程化為,則斜率為:,即,又由,解得或,又由且,所以傾斜角的范圍為,顯然A,B都符合,只有D不符合,故選D.【點睛】本題主要考查了直線方程的應(yīng)用,以及直線的傾斜角和斜率的關(guān)系,著重考查了分類討論思想,以及推理與運算能力.5、C【解析】
是等差數(shù)列,先根據(jù)已知求出首項和公差,再表示出,由的最小值確定n?!驹斀狻坑深}得,,解得,那么,當(dāng)n=7時,取到最小值-49.故選:C【點睛】本題考查等差數(shù)列前n項和,是基礎(chǔ)題。6、C【解析】
先令,則可求得的單調(diào)區(qū)間,再根據(jù),對賦值進而限定范圍即可【詳解】由題,令,則,當(dāng)時,在上單調(diào)遞增,則當(dāng)時,的單調(diào)增區(qū)間為,故選:C【點睛】本題考查正弦型函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題7、D【解析】
由題意畫出圖形,根據(jù)直線與圓的位置關(guān)系可得相切,設(shè)切點為P,數(shù)形結(jié)合找出M點滿足|MP|≤|OP|的范圍,從而得到答案.【詳解】由題意可知直線與圓相切,如圖,設(shè)直線x+y?2=0與圓相切于點P,要使在圓上存在點N,使得,使得最大值大于或等于時一定存在點N,使得,而當(dāng)MN與圓相切時,此時|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【點睛】本題考查直線與圓的位置關(guān)系,根據(jù)數(shù)形結(jié)合思想,畫圖進行分析可得,屬于中等題.8、B【解析】
①連接DB1,容易證明DB1⊥面ACD1,從而可以證明面面垂直;②連接A1B,A1C1容易證明平面BA1C1∥面ACD1,從而由線面平行的定義可得;③分析出A1P與AD1所成角的范圍,從而可以判斷真假;④=,C到面AD1P的距離不變,且三角形AD1P的面積不變;【詳解】對于①,連接DB1,根據(jù)正方體的性質(zhì),有DB1⊥面ACD1,DB1?平面PB1D,從而可以證明平面PB1D⊥平面ACD1,正確.②連接A1B,A1C1容易證明平面BA1C1∥面ACD1,從而由線面平行的定義可得A1P∥平面ACD1,正確.③當(dāng)P與線段BC1的兩端點重合時,A1P與AD1所成角取最小值,當(dāng)P與線段BC1的中點重合時,A1P與AD1所成角取最大值,故A1P與AD1所成角的范圍是,錯誤;④=,C到面AD1P的距離不變,且三角形AD1P的面積不變.∴三棱錐A﹣D1PC的體積不變,正確;正確的命題為①②④.故選B.【點睛】本題考查空間點、線、面的位置關(guān)系,空間想象能力,中檔題.9、B【解析】
利用橢圓的性質(zhì)列出不等式求解即可.【詳解】方程1表示焦點在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【點睛】本題考查橢圓的方程及簡單性質(zhì)的應(yīng)用,基本知識的考查.10、D【解析】
根據(jù)不等式的基本性質(zhì)逐一判斷可得答案.【詳解】解:A.當(dāng)時,不成立,故A不正確;B.取,,則結(jié)論不成立,故B不正確;C.當(dāng)時,結(jié)論不成立,故C不正確;D.若,則,故D正確.故選:D.【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、②③④【解析】
①利用反例證明命題錯誤;②先判斷為其中一條對稱軸;③通過恒等變換化成;④對兩個解析式進行變形,得到定義域和對應(yīng)關(guān)系均一樣.【詳解】對①,當(dāng),顯然,但,所以,不符合增函數(shù)的定義,故①錯;對②,當(dāng)時,,所以為的一條對稱軸,當(dāng)取,取時,顯然兩個數(shù)關(guān)于直線對稱,所以,即成立,故②對;對③,,,故③對;對④,因為,,兩個函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對.綜上所述,故填:②③④.【點睛】本題對三角函數(shù)的定義域、值域、單調(diào)性、對稱性、周期性等知識進行綜合考查,求解過程中要注意數(shù)形結(jié)合思想的應(yīng)用.12、【解析】
根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點睛】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.13、【解析】
首先求出圓的圓心坐標和半徑,計算圓心到直線的距離,再計算弦長即可.【詳解】圓,,圓心,半徑.圓心到直線的距離..故答案為:【點睛】本題主要考查直線與圓的位置關(guān)系中的弦長問題,熟練掌握弦長公式為解題的關(guān)鍵,屬于簡單題.14、262【解析】
根據(jù)條件列出不等式進行分析,確定公比、、的范圍后再綜合判斷.【詳解】設(shè)等比數(shù)列公比為,等差數(shù)列公差為,因為,,所以;又因為,分別為遞增的等差數(shù)列、等比數(shù)列,所以且;又時顯然不成立,所以,則,即;因為,,所以;因為,所以;由可知:,則,;又,所以,則有根據(jù)可解得符合條件的解有:或;當(dāng)時,,解得不符,當(dāng)時,解得,符合條件;則.【點睛】本題考查等差等比數(shù)列以及數(shù)列中項的存在性問題,難度較難.根據(jù)存在性將變量的范圍盡量縮小,通過不等式確定參變的取值范圍,然后再去確定符合的解,一定要注意帶回到原題中驗證,看是否滿足.15、【解析】
計算出角的取值范圍,利用同角三角函數(shù)的平方關(guān)系計算出的值和的值,然后利用兩角差的余弦公式可計算出的值.【詳解】由題意可知,,,,則,.因此,.故答案為.【點睛】本題考查利用兩角差的余弦公式求值,同時也考查了同角三角函數(shù)的平方關(guān)系求值,解題時要明確所求角與已知角之間的關(guān)系,合理利用公式是解題的關(guān)鍵,考查運算求解能力,屬于中等題.16、【解析】若直線與直線的交點位于第一象限,如圖所示:則兩直線的交點應(yīng)在線段上(不包含點),當(dāng)交點為時,直線的傾斜角為,當(dāng)交點為時,斜率,直線的傾斜角為∴直線的傾斜角的取值范圍是.故答案為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)已知遞推關(guān)系取倒數(shù),利用等差數(shù)列的定義,即可證明.(2)由(1)可知數(shù)列為等差數(shù)列,確定數(shù)列的通項公式,即可求出數(shù)列的通項公式.【詳解】證明:,且有,,又,,即,且,是首項為1,公差為的等差數(shù)列.解:由知,即,所以.【點睛】本題考查數(shù)列遞推關(guān)系、等差數(shù)列的判斷方法,考查了運用取倒數(shù)法求數(shù)列的通項公式,考查了推理能力和計算能力,屬于中檔題.18、(1);(2).【解析】分析:(1)由二倍角公式將表達式化一得到,,令,得到單調(diào)區(qū)間;(2)時,,根據(jù)第一問的表達式得到值域.詳解:(1)由令得:所以,函數(shù)的單調(diào)減區(qū)間為(2)當(dāng)時,所以,函數(shù)的值域是:.點睛:本題求最值利用三角函數(shù)輔助角公式將函數(shù)化為的形式,利用三角函數(shù)的圖像特點得到函數(shù)的值域.19、(1)(2)【解析】
(1)中直接由余弦定理可得,然后得到的度數(shù);(2)由(1)知,在中,由正弦定理可直接得到的值.【詳解】解:(1)在中,,,由余弦定理,有,在中,;(2)由(1)知,在中,由正弦定理,有,.【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,考查了計算能力,屬于基礎(chǔ)題.20、(1);(2)證明見解析,;(3)或.【解析】
(1)運用數(shù)列的遞推式以及數(shù)列的和與通項的關(guān)系可得,再由等比數(shù)列的定義、通項公式可得結(jié)果;(2)對等式兩邊除以,結(jié)合等差數(shù)列的定義和通項公式,可得所求;(3)求得,由數(shù)列的錯位相減法求和,可得,化簡,即,對任意的成立,運用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【詳解】(1),可得,即;時,,又,相減可得,即,則;(2)證明:,可得,可得是首項和公差均為1的等差數(shù)列,可得,即;(3),前n項和為,,相減可得,可得,,即為,即,對任意的成立,由,可得為遞減數(shù)列,即n=1時取得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度虛擬現(xiàn)實內(nèi)容制作與版權(quán)授權(quán)合同3篇
- 2025年度瓷磚鋪設(shè)與智能照明系統(tǒng)配套合同3篇
- 2025年度汽車融資租賃合同示范文本8篇
- 二零二五年度教育培訓(xùn)機構(gòu)學(xué)生資助及獎學(xué)金發(fā)放合同4篇
- 2025年度個人信用卡透支合同范本(二零二五年度)
- 2025年度電梯安全應(yīng)急救援物資儲備與供應(yīng)合同4篇
- 二零二五年度臨時工資料員綜合服務(wù)聘用合同2篇
- 2025年度廚房裝修工程噪音控制合同4篇
- 二零二五年度車位租賃糾紛調(diào)解與理賠服務(wù)合同4篇
- 二零二四年度遠程設(shè)備搬運與遠程監(jiān)控合同3篇
- 2025年山西國際能源集團限公司所屬企業(yè)招聘43人高頻重點提升(共500題)附帶答案詳解
- 二零二五年倉儲配送中心物業(yè)管理與優(yōu)化升級合同3篇
- 2025屆廈門高三1月質(zhì)檢期末聯(lián)考數(shù)學(xué)答案
- 音樂作品錄制許可
- 江蘇省無錫市2023-2024學(xué)年高三上學(xué)期期終教學(xué)質(zhì)量調(diào)研測試語文試題(解析版)
- 拉薩市2025屆高三第一次聯(lián)考(一模)英語試卷(含答案解析)
- 開題報告:AIGC背景下大學(xué)英語教學(xué)設(shè)計重構(gòu)研究
- 師德標兵先進事跡材料師德標兵個人主要事跡
- 連鎖商務(wù)酒店述職報告
- 2024年山東省煙臺市初中學(xué)業(yè)水平考試地理試卷含答案
- 《實踐論》(原文)毛澤東
評論
0/150
提交評論