2023-2024學年廣東省廣州市番禺區(qū)廣博校中考一模數學試題含解析_第1頁
2023-2024學年廣東省廣州市番禺區(qū)廣博校中考一模數學試題含解析_第2頁
2023-2024學年廣東省廣州市番禺區(qū)廣博校中考一模數學試題含解析_第3頁
2023-2024學年廣東省廣州市番禺區(qū)廣博校中考一模數學試題含解析_第4頁
2023-2024學年廣東省廣州市番禺區(qū)廣博校中考一模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省廣州市番禺區(qū)廣博校中考一模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數為()A.65° B.60°C.55° D.45°2.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣163.如果關于x的分式方程有負數解,且關于y的不等式組無解,則符合條件的所有整數a的和為()A.﹣2 B.0 C.1 D.34.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.5.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm26.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數法表示這個數是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1067.截至2010年“費爾茲獎”得主中最年輕的8位數學家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數據的中位數是()A.28 B.29 C.30 D.318.計算的結果是()A.1 B.-1 C. D.9.若M(2,2)和N(b,﹣1﹣n2)是反比例函數y=的圖象上的兩個點,則一次函數y=kx+b的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限10.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或14二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.12.如圖所示,數軸上點A所表示的數為a,則a的值是____.13.化簡的結果為_____.14.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.15.意大利著名數學家斐波那契在研究兔子繁殖問題時,發(fā)現有這樣一組數:1,1,2,3,5,8,13,…,請根據這組數的規(guī)律寫出第10個數是______.16.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.17.如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為.三、解答題(共7小題,滿分69分)18.(10分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.19.(5分)如圖,一次函數y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數圖象的一個交點為M(﹣2,m).(1)求反比例函數的解析式;(2)求點B到直線OM的距離.20.(8分)一名在校大學生利用“互聯網+”自主創(chuàng)業(yè),銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?21.(10分)為看豐富學生課余文化生活,某中學組織學生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據學生報名的統(tǒng)計結果,繪制了如下尚不完整的統(tǒng)計圖:圖1各項報名人數扇形統(tǒng)計圖:圖2各項報名人數條形統(tǒng)計圖:根據以上信息解答下列問題:(1)學生報名總人數為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統(tǒng)計圖補充完整;(4)學校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學中任意選取兩名同學去參加全市的書法比賽,求恰好選中甲、乙兩名同學的概率.22.(10分)已知.(1)化簡A;(2)如果a,b是方程的兩個根,求A的值.23.(12分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.24.(14分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據線段垂直平分線的性質得到AD=DC,根據等腰三角形的性質得到∠C=∠DAC,求得∠DAC=30°,根據三角形的內角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質,三角形的內角和,正確掌握線段垂直平分線的性質是解題關鍵.2、B【解析】

先把原式化為2x÷22y×23的形式,再根據同底數冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點睛】本題考查的是同底數冪的乘法及除法運算,根據題意把原式化為2x÷22y×23的形式是解答此題的關鍵.3、B【解析】

解關于y的不等式組,結合解集無解,確定a的范圍,再由分式方程有負數解,且a為整數,即可確定符合條件的所有整數a的值,最后求所有符合條件的值之和即可.【詳解】由關于y的不等式組,可整理得∵該不等式組解集無解,∴2a+4≥﹣2即a≥﹣3又∵得x=而關于x的分式方程有負數解∴a﹣4<1∴a<4于是﹣3≤a<4,且a為整數∴a=﹣3、﹣2、﹣1、1、1、2、3則符合條件的所有整數a的和為1.故選B.【點睛】本題考查的是解分式方程與解不等式組,求各種特殊解的前提都是先求出整個解集,再在解集中求特殊解,了解求特殊解的方法是解決本題的關鍵.4、B【解析】

將A、B、C、D分別展開,能和原圖相對應的即為正確答案:【詳解】A、展開得到,不能和原圖相對應,故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應,故本選項錯誤;D、展開得到,不能和原圖相對應,故本選項錯誤.故選B.5、C【解析】

已知對角線的長度,根據菱形的面積計算公式即可計算菱形的面積.【詳解】根據對角線的長可以求得菱形的面積,根據S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關鍵.6、C【解析】解:,故選C.7、C【解析】

根據中位數的定義即可解答.【詳解】解:把這些數從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數的平均數是:=30,則這組數據的中位數是30;故本題答案為:C.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.8、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.9、C【解析】

把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據k、b的值確定一次函數y=kx+b的圖象經過的象限.【詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數y=kx+b的圖象經過第一、三、四象限,故選C.【點睛】本題考查了反比例函數圖象的性質以及一次函數經過的象限,根據反比例函數的性質得出k,b的符號是解題關鍵.10、D【解析】

根據頂點公式求得已知拋物線的頂點坐標,然后根據軸對稱的性質求得另一條拋物線的頂點,根據題意得出關于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【點睛】本題考查了二次函數圖象與幾何變換,解答本題的關鍵是掌握二次函數的頂點坐標公式,坐標和線段長度之間的轉換,關于x軸對稱的點和拋物線的關系.二、填空題(共7小題,每小題3分,滿分21分)11、2.5秒.【解析】

把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.12、【解析】

根據數軸上點的特點和相關線段的長,利用勾股定理求出斜邊的長,即知表示0的點和A之間的線段的長,進而可推出A的坐標.【詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【點睛】此題主要考查了實數與數軸之間的對應關系,其中主要利用了:已知兩點間的距離,求較大的數,就用較小的數加上兩點間的距離.13、+1【解析】

利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.14、【解析】

根據概率的計算方法求解即可.【詳解】∵第4次拋擲一枚均勻的硬幣時,正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【點睛】此題考查了概率公式的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現:從第三個數起,每一個數都等于它前面兩個數的和.則第8個數為13+8=21;第9個數為21+13=34;第10個數為34+21=1.故答案為1.點睛:此題考查了數字的有規(guī)律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數據等認真進行分析、歸納并發(fā)現其中的規(guī)律,并應用規(guī)律解決問題.此類題目難度一般偏大.16、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質;2.三角形的內角和定理;3.切線的性質;4.扇形的面積.17、3.【解析】試題分析:連接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性質可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切線,可得∠PCO=90°,∠P=30°,再由PC=3,根據銳角三角函數可得OC=PC?tan30°=3,PC=2OC=23,即可得PB=PO﹣OB=3.考點:切線的性質;銳角三角函數.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.19、(1)(2).【解析】

(1)根據一次函數解析式求出M點的坐標,再把M點的坐標代入反比例函數解析式即可;(2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C,根據一次函數解析式表示出B點坐標,利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長,再次利用三角形的面積公式可得OM?h,根據前面算的三角形面積可算出h的值.【詳解】解:(1)∵一次函數y1=﹣x﹣1過M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴反比列函數為.(2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C.∵一次函數y1=﹣x﹣1與y軸交于點B,∴點B的坐標是(0,﹣1).∴.在Rt△OMC中,,∵,∴.∴點B到直線OM的距離為.20、(1)y=-x+40(10≤x≤16);(2)每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【解析】

根據題可設出一般式,再由圖中數據帶入可得答案,根據題目中的x的取值可得結果.②由總利潤=數量×單間商品的利潤可得函數式,可得解析式為一元二次式,配成頂點式可求出最大利潤時的銷售價,即可得出答案.【詳解】(1)y=-x+40(10≤x≤16).(2)根據題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當x<25時,W隨x的增大而增大∵10≤x≤16∴當x=16時,W取得最大值,最大值是144答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】熟悉掌握圖中所給信息以及列方程組是解決本題的關鍵.21、(1)200;(2)54°;(3)見解析;(4)【解析】

(1)根據A的人數及所占的百分比即可求出總人數;(2)用D的人數除以總人數再乘360°即可得出答案;(3)用總人數減去A,B,D,E的人數即為C對應的人數,然后即可把條形統(tǒng)計圖補充完整;(4)用樹狀圖列出所有的情況,找出恰好選中甲、乙兩名同學的情況數,利用概率公式求解即可.【詳解】解:(1)學生報名總人數為(人),故答案為:200;(2)項目所在扇形的圓心角等于,故答案為:54°;(3)項目的人數為,補全圖形如下:(4)畫樹狀圖得:所有出現的等可能性結果共有12種,其中滿足條件的結果有2種.恰好選中甲、乙兩名同學的概率為.【點睛】本題主要考查扇形統(tǒng)計圖與條形統(tǒng)計圖的結合,能夠從圖表中獲取有用信息,掌握概率公式是解題的關鍵.22、(1);(2)-.【解析】

(1)先通分,再根據同分母的分式相加減求出即可;(2)根據根與系數的關系即可得出結論.【詳解】(1)A=﹣==;(2)∵a,b是方程的兩個根,∴a+b=4,ab=-12,∴.【點睛】本題考查了分式的加減和根與系數的關系,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論