2023-2024學年湖北省廣水市重點達標名校中考數(shù)學押題卷含解析_第1頁
2023-2024學年湖北省廣水市重點達標名校中考數(shù)學押題卷含解析_第2頁
2023-2024學年湖北省廣水市重點達標名校中考數(shù)學押題卷含解析_第3頁
2023-2024學年湖北省廣水市重點達標名校中考數(shù)學押題卷含解析_第4頁
2023-2024學年湖北省廣水市重點達標名校中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省廣水市重點達標名校中考數(shù)學押題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面運算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|2.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.3.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近4.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.5.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<16.已知方程x2﹣x﹣2=0的兩個實數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣17.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側面積為()A. B.π C.50 D.50π8.實數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,下列結論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個9.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個結論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結論中,正確的共有()個A.1個 B.2個 C.3個 D.4個10.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數(shù)圖象大致形狀是()A. B. C. D.11.已知二次函數(shù)y=a(x﹣2)2+c,當x=x1時,函數(shù)值為y1;當x=x2時,函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>012.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.14.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)15.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_________.16.計算:6﹣=_____17.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.18.已知方程的一個根為1,則的值為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.20.(6分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.21.(6分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.①求S關于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.22.(8分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.23.(8分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數(shù)的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.24.(10分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.25.(10分)某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調查的學生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).26.(12分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.27.(12分)近幾年“霧霾”成為全社會關注的話題某校環(huán)保志愿者小組對該市2018年空氣質量進行調查,從全年365天中隨機抽查了50天的空氣質量指數(shù)(AQI),得到以下數(shù)據(jù):43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)請你完成如下的統(tǒng)計表;AQI0~5051~100101~150151~200201~250300以上質量等級A(優(yōu))B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(shù)(2)請你根據(jù)題中所給信息繪制該市2018年空氣質量等級條形統(tǒng)計圖;(3)請你估計該市全年空氣質量等級為“重度污染”和“嚴重污染”的天數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

分別利用整數(shù)指數(shù)冪的性質以及合并同類項以及積的乘方運算、絕對值的性質分別化簡求出答案.【詳解】解:A,,故此選項錯誤;B,,故此選項錯誤;C,,故此選項錯誤;D,,故此選項正確.所以D選項是正確的.【點睛】靈活運用整數(shù)指數(shù)冪的性質以及合并同類項以及積的乘方運算、絕對值的性質可以求出答案.2、A【解析】

根據(jù)圖形,結合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程組.3、D【解析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.4、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.5、C【解析】

將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.6、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.7、A【解析】

根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【詳解】解:圓錐的側面積=?5?5=.故選A.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.8、B【解析】

根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關鍵.9、C【解析】【分析】根據(jù)正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,有一定的難度.10、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學生從圖象中讀取信息的數(shù)形結合能力,體現(xiàn)了分類討論的思想.11、C【解析】

分a>1和a<1兩種情況根據(jù)二次函數(shù)的對稱性確定出y1與y2的大小關系,然后對各選項分析判斷即可得解.【詳解】解:①a>1時,二次函數(shù)圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,②a<1時,二次函數(shù)圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,綜上所述,表達式正確的是a(y1﹣y2)>1.故選:C.【點睛】本題主要考查二次函數(shù)的性質,利用了二次函數(shù)的對稱性,關鍵要掌握根據(jù)二次項系數(shù)a的正負分情況討論.12、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對頂角,不能判斷a與b是否平行,故D錯誤.故選D.考點:平行線的判定.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.14、①②④【解析】

由正方形的性質和相似三角形的判定與性質,即可得出結論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點睛】本題考查的正方形的性質,等邊三角形的性質以及相似三角形的判定和性質,解答此題的關鍵是熟練掌握性質和定理.15、1:4【解析】

由S△BDE:S△CDE=1:3,得到

,于是得到

.【詳解】解:兩個三角形同高,底邊之比等于面積比.故答案為【點睛】本題考查了三角形的面積,比例的性質等知識,知道等高不同底的三角形的面積的比等于底的比是解題的關鍵.16、3【解析】

按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關鍵是注意化簡算式.17、17【解析】

先利用完全平方公式展開,然后再求和.【詳解】根據(jù)(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.18、1【解析】

欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數(shù)的關系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標為(,)或(,);②<t<.【解析】

(1)設拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關系,即可解答(2)先求出當x=0時,C的坐標,設直線AC的解析式為y=px+q,把A,C的坐標代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當x=0時,y=﹣x2+2x+3=3,則C(0,3),設直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點C作AC的垂線交拋物線于另一點P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時P1點坐標為(,);過點A作AC的垂線交拋物線于另一點P2,直線AP2的解析式可設為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時P2點坐標為(,),綜上所述,符合條件的點P的坐標為(,)或(,);②<t<.【點睛】此題考查二次函數(shù)綜合題,解題關鍵在于把已知點代入解析式求值和作輔助線.20、(30+30)米.【解析】

解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米21、(1)y=﹣x2+2x+1.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(1)y=﹣x+1;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解析】【分析】(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標利用平行四邊形的性質可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結合CE≠PE可得出此時不存在符合題意的點M;(1)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數(shù)表達式;②利用二次函數(shù)的性質找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴拋物線的對稱軸為直線x=1,當t=2時,點C、P關于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+1,∴點C的坐標為(0,1),點P的坐標為(2,1),∴點M的坐標為(1,6);當t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標為0,點E的橫坐標為0,∴點P的橫坐標t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點P作PF∥y軸,交BC于點F.設直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點P的坐標為(t,﹣t2+2t+1),∴點F的坐標為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當t=時,S取最大值,最大值為.∵點B的坐標為(1,0),點C的坐標為(0,1),∴線段BC=,∴P點到直線BC的距離的最大值為,此時點P的坐標為(,).【點睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質、三角形的面積、一次(二次)函數(shù)圖象上點的坐標特征以及二次函數(shù)的性質,解題的關鍵是:(1)由點的坐標,利用待定系數(shù)法求出拋物線表達式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關于t的函數(shù)表達式;②利用二次函數(shù)的性質結合面積法求出P點到直線BC的距離的最大值.22、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質,可得AB與CD的關系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質,可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質,可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點睛】本題考查了平行四邊形的性質,利用了平行四邊形的性質,矩形的判定,等腰三角形的判定與性質,利用等腰三角形的判定與性質得出∠DAF=∠DFA是解題關鍵.23、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】

(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結論;(3)設出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質,用方程的思想解決問題是解本題的關鍵.24、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】

連接由題意可證明,于是得到,由等腰三角形三線合一的性質可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;先求得BE的長,然后證明∽,由相似三角形的性質可求得AE的長,于是可得到AF的長.【詳解】直線l與相切.理由:如圖1所示:連接OE.平分,.,.,.直線l與相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案為:(1)直線l與相切,見解析;(2)見解析;(3)AF=.【點睛】本題主要考查的是圓的性質、相似三角形的性質和判定、等腰三角形的性質、三角形外角的性質、切線的判定,證得是解題的關鍵.25、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】

(1)根據(jù)“騎電動車”上下的人數(shù)除以所占的百分比,即可得到調查學生數(shù);用調查學生數(shù)乘以選擇類的人數(shù)所占的百分比,即可求出選擇類的人數(shù).

(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數(shù);由總學生數(shù)求出選擇公共交通的人數(shù),補全統(tǒng)計圖即可;

(3)由總人數(shù)乘以“綠色出行”的百分比,即可得到結果.【詳解】(1)參與本次問卷調查的學生共有:(人);選擇類的人數(shù)有:故答案為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論