




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
深圳市龍文一對一2025屆高一下數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.2.正項等比數(shù)列與等差數(shù)列滿足,,,則的大小關(guān)系為()A. B. C. D.不確定3.已知直線:是圓的對稱軸.過點作圓的一條切線,切點為,則()A.2 B. C.6 D.4.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.5.已知點在直線上,若存在滿足該條件的使得不等式成立,則實數(shù)的取值范圍是()A. B. C. D.6.已知數(shù)列滿足,(且),且數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,又,則A. B. C. D.7.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為()A.63.6萬元 B.65.5萬元 C.67.7萬元 D.72.0萬元8.若函數(shù)的圖象可由函數(shù)的圖象向右平移個單位長度變換得到,則的解析式是()A. B.C. D.9.設函數(shù),若函數(shù)恰有兩個零點,則實數(shù)的取值范圍為()A. B. C. D.10.已知向量,,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知三棱錐的外接球的球心恰好是線段的中點,且,則三棱錐的體積為__________.12.給出下列四個命題:①在中,若,則;②已知點,則函數(shù)的圖象上存在一點,使得;③函數(shù)是周期函數(shù),且周期與有關(guān),與無關(guān);④設方程的解是,方程的解是,則.其中真命題的序號是______.(把你認為是真命題的序號都填上)13.函數(shù)的值域為_____________.14.設x、y滿足約束條件,則的取值范圍是______.15.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內(nèi)切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.16.的內(nèi)角的對邊分別為,若,,,則的面積為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.18.如圖,為圓的直徑,點,在圓上,,矩形和圓所在的平面互相垂直,已知,.(1)求證:平面平面;(2)當時,求多面體的體積.19.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達式及定義域;(2)求的最大值及此時的值20.數(shù)列中,,,.(1)證明:數(shù)列是等比數(shù)列.(2)若,,且,求的值.21.在四棱錐中,底面,,,,,點為棱的中點.(1)求證:;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)三視圖可知幾何體是組合體:上面是半個圓錐(高為圓柱的一半),下面是半個圓柱,其中圓錐底面半徑是,高是,圓柱的底面半徑是,母線長是,所以該幾何體的體積,故選B.【方法點睛】本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響.2、B【解析】
利用分析的關(guān)系即可.【詳解】因為正項等比數(shù)列與等差數(shù)列,故又,當且僅當時“=”成立,又即,故,故選:B【點睛】本題主要考查等差等比數(shù)列的性質(zhì)與基本不等式的“一正二定三相等”.若是等比數(shù)列,且,則若是等差數(shù)列,且,則3、C【解析】試題分析:直線l過圓心,所以,所以切線長,選C.考點:切線長4、A【解析】
連接和,由二面角的定義得出,由結(jié)合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.5、B【解析】
根據(jù)題干得到,存在滿足該條件的使得不等式成立,即,再根據(jù)均值不等式得到最小值為9,再由二次不等式的解法得到結(jié)果.【詳解】點在直線上,故得到,存在滿足該條件的使得不等式成立,即故原題轉(zhuǎn)化為故答案為:B【點睛】本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.解決二元的范圍或者最值問題,常用的方法有:不等式的應用,二元化一元的應用,線性規(guī)劃的應用,等.6、A【解析】
根據(jù)已知條件可以推出,當為奇數(shù)時,,當為偶數(shù)時,,因此去絕對值可以得到,,利用累加法繼而算出結(jié)果.【詳解】,即,或,又,.數(shù)列為遞增數(shù)列,數(shù)列為遞減數(shù)列,當為奇數(shù)時,,當為偶數(shù)時,,..故選A.【點睛】本題主要考查了通過遞推式求數(shù)列的通項公式,數(shù)列單調(diào)性的應用,以及并項求和法的應用。7、B【解析】∵,∵數(shù)據(jù)的樣本中心點在線性回歸直線上,
回歸方程中的為9.4∴線性回歸方程是y=9.4x+9.1,
∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5,
故選B.8、A【解析】
先化簡函數(shù),然后再根據(jù)圖象平移得.【詳解】由已知,∴.故選A.【點睛】本題考查兩角和的正弦公式,考查三角函數(shù)的圖象平移變換,屬于基礎題.9、A【解析】
首先注意到,是函數(shù)的一個零點.當時,將分離常數(shù)得到,構(gòu)造函數(shù),畫出的圖像,根據(jù)“函數(shù)與函數(shù)有一個交點”結(jié)合圖像,求得的取值范圍.【詳解】解:由恰有兩個零點,而當時,,即是函數(shù)的一個零點,故當時,必有一個零點,即函數(shù)與函數(shù)必有一個交點,利用單調(diào)性,作出函數(shù)圖像如下所示,由圖可知,要使函數(shù)與函數(shù)有一個交點,只需即可.故實數(shù)的取值范圍是.故選:A.【點睛】本小題主要考查已知函數(shù)零點個數(shù),求參數(shù)的取值范圍,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.10、B【解析】
∵,∴.∴,即,∴,,故選B.【考點定位】向量的坐標運算二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意得出平面后,由計算可得答案.【詳解】因為三棱錐的外接球的球心恰好是的中點,所以和都是直角三角形,又因為,所以,,又,則平面.因為,所以三角形為邊長是的等邊三角形,所以.故答案為:【點睛】本題考查了直線與平面垂直的判定,考查了三棱錐與球的組合,考查了三棱錐的體積公式,屬于中檔題.12、①③【解析】
①利用三角形的內(nèi)角和定理以及正弦函數(shù)的單調(diào)性進行判斷;②根據(jù)余弦函數(shù)的有界性可進行判斷;③利用周期函數(shù)的定義,結(jié)合余弦函數(shù)的周期性進行判斷;④根據(jù)互為反函數(shù)圖象的對稱性進行判斷.【詳解】①在中,若,則,則,由于正弦函數(shù)在區(qū)間上為增函數(shù),所以,故命題①正確;②已知點,則函數(shù),所以該函數(shù)圖象上不存在一點,使得,故命題②錯誤;③函數(shù)的是周期函數(shù),當時,,該函數(shù)的周期為.當時,,該函數(shù)的周期為.所以,函數(shù)的周期與有關(guān),與無關(guān),命題③正確;④設方程的解是,方程的解是,由,可得,由,可得,則可視為函數(shù)與直線交點的橫坐標,可視為函數(shù)與直線交點的橫坐標,如下圖所示:聯(lián)立,得,可得點,由于函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,則直線與函數(shù)和函數(shù)圖象的兩個交點關(guān)于點對稱,所以,命題④錯誤.故答案為:①③.【點睛】本題考查三角函數(shù)的周期、正弦函數(shù)單調(diào)性的應用、互為反函數(shù)圖象的對稱性的應用以及余弦函數(shù)有界性的應用,考查分析問題和解決問題的能力,屬于中等題.13、【解析】
分析函數(shù)在區(qū)間上的單調(diào)性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關(guān)鍵就是判斷出函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
由約束條件可得可行域,將問題轉(zhuǎn)化為在軸截距取值范圍的求解;通過直線平移可確定的最值點,代入點的坐標可求得最值,進而得到取值范圍.【詳解】由約束條件可得可行域如下圖陰影部分所示:將的取值范圍轉(zhuǎn)化為在軸截距的取值范圍問題由平移可知,當過圖中兩點時,在軸截距取得最大和最小值,,的取值范圍為故答案為:【點睛】本題考查線性規(guī)劃中的取值范圍問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化成直線在軸截距的取值范圍的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.15、825【解析】
以AB,BC所在直線為坐標軸建立平面直角坐標系,設直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點M作△ABC的三邊的垂線,設⊙M的半徑為r,則r2,以AB,BC所在直線為坐標軸建立平面直角坐標系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當k>﹣3時,4(k+3)25≥825,當且僅當4(k+3),即k3時取等號;②當k<﹣3時,則4(k+3)23≥823,當且僅當﹣4(k+3),即k3時取等號.故答案為:825【點睛】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學生對這些知識的理解掌握水平.16、【解析】
由已知及正弦定理可得:,進而利用余弦定理即可求得a的值,進而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點睛】本題注意考查余弦定理與正弦定理的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)直接利用任意角的三角函數(shù)的定義,求得的值.(2)利用誘導公式化簡所給的式子,再把代入,求得結(jié)果.【詳解】解:(1)因為角的終邊經(jīng)過點由三角函數(shù)的定義可知.(2)由(1)知,.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導公式,屬于基礎題.18、(1)證明見解析;(2)【解析】
(1)由題可得,,從而可得平面,由此證明平面平面;(2)過作交于,所以為四棱錐的高,多面體的體積,利用體積公式即可得到答案.【詳解】(1)證明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵為圓的直徑,∴,又,∴平面,∵平面,平面平面;(2)過作交于,由面面垂直性質(zhì)可得平面,即為四棱錐的高,由是邊長為1的等邊三角形,可得,又正方形的面積為4,∴..所以.【點睛】本題主要考查面面垂直的證明,以及求多面體的體積,要求熟練掌握相應判定定理以及椎體、柱體的體積公式,屬于中檔題.19、(1)(2)當時,取最大值.【解析】
(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設,則,,則,,則.,當時,,此時,即,,,,故.故的最大值為,此時.【點睛】本題考查了三角函數(shù)的應用,重點考查了運算能力,屬中檔題20、(1)見解析(2)9或35或133【解析】
(1)分別寫出和,做商,再用表示出,代入即可得q,由可得,得證;(2)由(1)得數(shù)列的通項公式,代入并整理,根據(jù)即得m+n的值。【詳解】(1)證明:因為,所以,所以.因為,所以,所以.因為,所以.故數(shù)列是以2為首項,為公比的等比數(shù)列.(2)解:由(1)可得.因為,所以,整理得,則.因為,,所以,則的值為2或4或6.當時,,,符合題意,則;當時,,,符合題意,則;當時,,,符合題意,則.綜上,的值為9或35或133.【點睛】本題考查求數(shù)列通項公式和已知通項公式求參數(shù)的和,解題關(guān)鍵在于細心驗證m取值是否滿足題干要求。21、(1)證明見解析;(2)【解析】
(1)取中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 油氣田智能化開發(fā)與管理系統(tǒng)建設方案
- 機場貴賓廳吧臺設計與施工合同范本
- 美食廣場經(jīng)營權(quán)轉(zhuǎn)讓合同
- 知識產(chǎn)權(quán)采購合同中專利授權(quán)及糾紛解決條款
- 車輛掛名權(quán)益保障及免責責任明確協(xié)議
- 彩鋼結(jié)構(gòu)簡易搭建與環(huán)保評估合同
- 環(huán)保產(chǎn)業(yè)財務合同環(huán)保技術(shù)投資與運營管理合同
- 出租車企業(yè)智能化調(diào)度司機合作協(xié)議
- 經(jīng)銷白酒招商方案
- 企業(yè)四新培訓課件
- LS/T 3244-2015全麥粉
- GB/T 6414-2017鑄件尺寸公差、幾何公差與機械加工余量
- GB/T 20957.4-2007精密加工中心檢驗條件第4部分:線性和回轉(zhuǎn)軸線的定位精度和重復定位精度檢驗
- 電纜橋架施工圖集
- 信念的力量課件
- 接力初三贏在暑假-八年級下學期期末家長會課件
- 大海(張雨生)原版五線譜鋼琴譜正譜樂譜
- 有限空間作業(yè)實操評分標準
- 精品案例-LTE負荷均衡優(yōu)化案例
- 提升零售戶店鋪形象煙草QC課件
- 惡魔城蒼月的十字架全怪物圖鑒
評論
0/150
提交評論