版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇省鹽城市阜寧縣中考數(shù)學(xué)猜題卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.設(shè)0<k<2,關(guān)于x的一次函數(shù)y=(k-2)x+2,當(dāng)1≤x≤2時(shí),y的最小值是()A.2k-2B.k-1C.kD.k+12.下列圖形中,線段MN的長(zhǎng)度表示點(diǎn)M到直線l的距離的是()A. B. C. D.3.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m4.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.5.如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°6.如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達(dá)B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯(cuò)誤的是()A.①② B.②④ C.①③ D.③④7.如圖,AB為⊙O的直徑,C、D為⊙O上的點(diǎn),若AC=CD=DB,則cos∠CAD=()A. B. C. D.8.每個(gè)人都應(yīng)懷有對(duì)水的敬畏之心,從點(diǎn)滴做起,節(jié)水、愛水,保護(hù)我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價(jià)”計(jì)費(fèi)方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個(gè)月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()用水量x(噸)34567頻數(shù)1254﹣xxA.平均數(shù)、中位數(shù)B.眾數(shù)、中位數(shù)C.平均數(shù)、方差D.眾數(shù)、方差9.在以下四個(gè)圖案中,是軸對(duì)稱圖形的是()A. B. C. D.10.如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.311.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.12.在一個(gè)不透明的袋子中裝有除顏色外其余均相同的m個(gè)小球,其中5個(gè)黑球,從袋中隨機(jī)摸出一球,記下其顏色,這稱為依次摸球試驗(yàn),之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計(jì)算機(jī)模擬的摸球試驗(yàn)次數(shù)與摸出黑球次數(shù)的列表:摸球試驗(yàn)次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計(jì)出m的值是()A.5 B.10 C.15 D.20二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.分解因式:_______________.14.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是_________.15.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點(diǎn)是點(diǎn)O,,則=_____.16.如圖,在梯形中,,E、F分別是邊的中點(diǎn),設(shè),那么等于__________(結(jié)果用的線性組合表示).17.如圖,直線與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是______.18.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點(diǎn)A,點(diǎn)B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點(diǎn),順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請(qǐng)回答:該尺規(guī)作圖的依據(jù)是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運(yùn)動(dòng),連接AP,將線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點(diǎn)Q落到AD上時(shí),∠PAB=____°,PA=_____,長(zhǎng)為_____;(2)當(dāng)AP⊥BD時(shí),記此時(shí)點(diǎn)P為P0,點(diǎn)Q為Q0,移動(dòng)點(diǎn)P的位置,求∠QQ0D的大??;(3)在點(diǎn)P運(yùn)動(dòng)中,當(dāng)以點(diǎn)Q為圓心,BP為半徑的圓與直線BD相切時(shí),求BP的長(zhǎng)度;(4)點(diǎn)P在線段BD上,由B向D運(yùn)動(dòng)過程(包含B、D兩點(diǎn))中,求CQ的取值范圍,直接寫出結(jié)果.20.(6分)一個(gè)不透明的口袋中裝有2個(gè)紅球、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.21.(6分)先化簡(jiǎn)代數(shù)式,再?gòu)末?,0,3中選擇一個(gè)合適的a的值代入求值.22.(8分)某中學(xué)七、八年級(jí)各選派10名選手參加知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a、b.隊(duì)別平均分中位數(shù)方差合格率優(yōu)秀率七年級(jí)6.7m3.4190%n八年級(jí)7.17.51.6980%10%(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí);所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.23.(8分)如圖,一位測(cè)量人員,要測(cè)量池塘的寬度的長(zhǎng),他過兩點(diǎn)畫兩條相交于點(diǎn)的射線,在射線上取兩點(diǎn),使,若測(cè)得米,他能求出之間的距離嗎?若能,請(qǐng)你幫他算出來;若不能,請(qǐng)你幫他設(shè)計(jì)一個(gè)可行方案.24.(10分)為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.25.(10分)先化簡(jiǎn),再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.26.(12分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長(zhǎng)線上的點(diǎn),∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.27.(12分)2018年江蘇省揚(yáng)州市初中英語(yǔ)口語(yǔ)聽力考試即將舉行,某校認(rèn)真復(fù)習(xí),積極迎考,準(zhǔn)備了A、B、C、D四份聽力材料,它們的難易程度分別是易、中、難、難;a,b是兩份口語(yǔ)材料,它們的難易程度分別是易、難.從四份聽力材料中,任選一份是難的聽力材料的概率是.用樹狀圖或列表法,列出分別從聽力、口語(yǔ)材料中隨機(jī)選一份組成一套完整的模擬試卷的所有情況,并求出兩份材料都是難的一套模擬試卷的概率.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
先根據(jù)0<k<1判斷出k-1的符號(hào),進(jìn)而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結(jié)論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當(dāng)x=1時(shí),y最小=1(k-1)+1=1k-1.故選A.【點(diǎn)睛】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0,b>0時(shí)函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關(guān)鍵.2、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長(zhǎng)度不能表示點(diǎn)M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點(diǎn)N,故線段MN的長(zhǎng)度能表示點(diǎn)M到直線l的距離.故選A.3、C【解析】連結(jié)OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.4、B【解析】
先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.5、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點(diǎn)D沿EF折疊后與點(diǎn)B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點(diǎn)睛:這是一道有關(guān)矩形折疊的問題,熟悉“矩形的四個(gè)內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.6、B【解析】
先根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及方向角的描述方法解答即可.【詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯(cuò)誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯(cuò)誤.故選B.【點(diǎn)睛】本題考查的是方向角,平行線的性質(zhì),特殊角的三角函數(shù)值,解答此類題需要從運(yùn)動(dòng)的角度,正確畫出方位角,再結(jié)合平行線的性質(zhì)求解.7、D【解析】
根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進(jìn)而求出它的余弦值.【詳解】解:===,故選D.【點(diǎn)睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.8、B【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結(jié)合前兩組的頻數(shù)知第6、7個(gè)數(shù)據(jù)的平均數(shù),可得答案.【詳解】∵6噸和7噸的頻數(shù)之和為4-x+x=4,∴頻數(shù)之和為1+2+5+4=12,則這組數(shù)據(jù)的中位數(shù)為第6、7個(gè)數(shù)據(jù)的平均數(shù),即5+52∴對(duì)于不同的正整數(shù)x,中位數(shù)不會(huì)發(fā)生改變,∵后兩組頻數(shù)和等于4,小于5,∴對(duì)于不同的正整數(shù)x,眾數(shù)不會(huì)發(fā)生改變,眾數(shù)依然是5噸.故選B.【點(diǎn)睛】本題主要考查頻數(shù)分布表及統(tǒng)計(jì)量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)的定義和計(jì)算方法是解題的關(guān)鍵.9、A【解析】
根據(jù)軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷利用排除法求解.【詳解】A、是軸對(duì)稱圖形,故本選項(xiàng)正確;
B、不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;
C、不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;
D、不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.
故選:A.【點(diǎn)睛】本題考查了軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.10、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長(zhǎng).【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點(diǎn)睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.11、D【解析】
根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗(yàn),a=1是原方程的解故選D.點(diǎn)睛:此題考查了分式方程的解,分式方程注意分母不能為2.12、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒?yàn)次數(shù)的值總是在0.5左右,則由題意可得5故選擇B.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).14、【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長(zhǎng),然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長(zhǎng).【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),∴故答案為:【點(diǎn)睛】此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,屬于中考常見題型,求出OP的長(zhǎng)是解題關(guān)鍵.15、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點(diǎn)是點(diǎn)O,∴==,則===.故答案為.點(diǎn)睛:本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.16、.【解析】
作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計(jì)算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點(diǎn)睛】本題考查了平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.17、【解析】解:過點(diǎn)C作CP⊥直線AB于點(diǎn)P,過點(diǎn)P作⊙C的切線PQ,切點(diǎn)為Q,此時(shí)PQ最小,連接CQ,如圖所示.當(dāng)x=0時(shí),y=3,∴點(diǎn)B的坐標(biāo)為(0,3);當(dāng)y=0時(shí),x=4,∴點(diǎn)A的坐標(biāo)為(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC?sinB=.∵PQ為⊙C的切線,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案為.18、相等的圓心角所對(duì)的弦相等,直徑所對(duì)的圓周角是直角.【解析】
根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【詳解】到線段兩端距離相等的點(diǎn)在這條線段的中垂線上;兩點(diǎn)確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【點(diǎn)睛】本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質(zhì),解本題的要點(diǎn)在于熟知相關(guān)基本知識(shí)點(diǎn).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長(zhǎng)為或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長(zhǎng)度;(2)分點(diǎn)Q在BD上方和下方的情況討論求解即可.(3)分別討論點(diǎn)Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計(jì)算即可;(4)由(2)可知,點(diǎn)Q在過點(diǎn)Qo,且與BD夾角為45°的線段EF上運(yùn)動(dòng),有圖形可知,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)E時(shí),CQ最長(zhǎng)為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【詳解】解:(1)如圖,過點(diǎn)P做PE⊥AD于點(diǎn)E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設(shè)PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長(zhǎng)為?2π?=π.故答案為45,,π.(2)如圖,過點(diǎn)Q做QF⊥BD于點(diǎn)F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當(dāng)點(diǎn)Q在BD的右下方時(shí),同理可得∠PQ0Q=45°,此時(shí)∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當(dāng)點(diǎn)Q直線BD上方,當(dāng)以點(diǎn)Q為圓心,BP為半徑的圓與直線BD相切時(shí)過點(diǎn)Q做QF⊥BD于點(diǎn)F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當(dāng)點(diǎn)Q位于BD下方時(shí),可求得BP=故BP的長(zhǎng)為或(4)由(2)可知∠QQ0D=45°則如圖,點(diǎn)Q在過點(diǎn)Q0,且與BD夾角為45°的線段EF上運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),點(diǎn)Q與點(diǎn)F重合,此時(shí),CF=4﹣3=1當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),點(diǎn)Q與點(diǎn)E重合,此時(shí),CE=4+3=7∴EF===5過點(diǎn)C做CH⊥EF于點(diǎn)H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點(diǎn)睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質(zhì)以及三角形相似的相關(guān)知識(shí),應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.20、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點(diǎn)睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、,1【解析】
先通分得到,再根據(jù)平方差公式和完全平方公式得到,化簡(jiǎn)后代入a=3,計(jì)算即可得到答案.【詳解】原式===,當(dāng)a=3時(shí)(a≠﹣1,0),原式=1.【點(diǎn)睛】本題考查代數(shù)式的化簡(jiǎn)、平方差公式和完全平方公式,解題的關(guān)鍵是掌握代數(shù)式的化簡(jiǎn)、平方差公式和完全平方公式.22、(1)a=5,b=1;(2)6;20%;(3)八年級(jí)平均分高于七年級(jí),方差小于七年級(jí).【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級(jí)成績(jī)?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級(jí)平均分高于七年級(jí),方差小于七年級(jí),成績(jī)比較穩(wěn)定,故八年級(jí)隊(duì)比七年級(jí)隊(duì)成績(jī)好.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.統(tǒng)計(jì)表;3.加權(quán)平均數(shù);4.中位數(shù);5.方差.23、可以求出A、B之間的距離為111.6米.【解析】
根據(jù),(對(duì)頂角相等),即可判定,根據(jù)相似三角形的性質(zhì)得到,即可求解.【詳解】解:∵,(對(duì)頂角相等),∴,∴,∴,解得米.所以,可以求出、之間的距離為米【點(diǎn)睛】考查相似三角形的應(yīng)用,掌握相似三角形的判定方法和性質(zhì)是解題的關(guān)鍵.24、(1)大貨車用8輛,小貨車用7輛;(2)y=100x+1.(3)見解析.【解析】
(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運(yùn)輸152箱魚苗,列方程組求解;(2)設(shè)前往A村的大貨車為x輛,則前往B村的大貨車為(8-x)輛,前往A村的小貨車為(10-x)輛,前往B村的小貨車為[7-(10-x)]輛,根據(jù)表格所給運(yùn)費(fèi),求出y與x的函數(shù)關(guān)系式;(3)結(jié)合已知條件,求x的取值范圍,由(2)的函數(shù)關(guān)系式求使總運(yùn)費(fèi)最少的貨車調(diào)配方案.【詳解】(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:解得:.∴大貨車用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度美團(tuán)外賣店鋪服務(wù)標(biāo)準(zhǔn)合同范本4篇
- 二零二五年度標(biāo)準(zhǔn)裝載機(jī)租賃合同附帶租賃設(shè)備更換服務(wù)3篇
- 2025年度美團(tuán)外賣平臺(tái)食品安全責(zé)任承諾合同2篇
- 2025年度房地產(chǎn)開發(fā)項(xiàng)目融資合同范本7篇
- 二零二五年度船舶貨物保險(xiǎn)合同示范文本2篇
- 二零二五年度新能源產(chǎn)業(yè)融資合同3篇
- 二零二五年度全新廣東房屋租賃合同規(guī)范租賃市場(chǎng)秩序2篇
- 2025年度科技創(chuàng)新區(qū)土地使用權(quán)轉(zhuǎn)讓居間合同范本
- 2025年度農(nóng)藥產(chǎn)品代理銷售數(shù)據(jù)統(tǒng)計(jì)分析合同
- 2025年度南京汽車租賃押金管理合同范本4篇
- 2024年財(cái)政部會(huì)計(jì)法律法規(guī)答題活動(dòng)題目及答案一
- 2024年云網(wǎng)安全應(yīng)知應(yīng)會(huì)考試題庫(kù)
- 寒假計(jì)劃表作息時(shí)間安排表
- 高考日語(yǔ)基礎(chǔ)歸納總結(jié)與練習(xí)(一輪復(fù)習(xí))
- 《預(yù)防犯罪》課件
- 【企業(yè)作業(yè)成本在上海汽車集團(tuán)中的應(yīng)用研究案例7300字(論文)】
- 高中物理答題卡模板
- 化學(xué)用語(yǔ)專項(xiàng)訓(xùn)練
- 芳香植物與芳香療法講解課件
- 不孕癥診斷、治療新進(jìn)展課件
- 學(xué)校食堂食品質(zhì)量控制方案
評(píng)論
0/150
提交評(píng)論