安徽省合肥市北城片區(qū)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第1頁
安徽省合肥市北城片區(qū)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第2頁
安徽省合肥市北城片區(qū)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第3頁
安徽省合肥市北城片區(qū)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第4頁
安徽省合肥市北城片區(qū)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省合肥市北城片區(qū)2024屆中考沖刺卷數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列圖形中,哪一個是圓錐的側(cè)面展開圖?A. B. C. D.2.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°3.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-74.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的A. B. C. D.5.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④6.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.7.為喜迎黨的十九大召開,樂陵某中學(xué)剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.8.下列運算正確的是()A.2a2+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab9.如圖,在⊙O中,直徑CD⊥弦AB,則下列結(jié)論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D10.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°二、填空題(共7小題,每小題3分,滿分21分)11.已知點,在二次函數(shù)的圖象上,若,則__________.(填“”“”“”)12.使分式x213.如圖,已知長方體的三條棱AB、BC、BD分別為4,5,2,螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是_____.14.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.15.如圖,在平面直角坐標系xOy中,△ABC可以看作是△DEF經(jīng)過若干次圖形的變化(平移、旋轉(zhuǎn)、軸對稱)得到的,寫出一種由△DEF得到△ABC的過程____.16.計算的結(jié)果等于_____________.17.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.19.(5分)解分式方程:.20.(8分)關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.求m的取值范圍;若m為正整數(shù),求此方程的根.21.(10分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大??;(Ⅱ)如圖②,當DE=BE時,求∠C的大?。?2.(10分)在一個不透明的盒子里,裝有三個分別寫有數(shù)字6,-2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數(shù)字相同;兩次取出小球上的數(shù)字之和大于1.23.(12分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當S=時,對應(yīng)的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.24.(14分)八年級(1)班研究性學(xué)習小組為研究全校同學(xué)課外閱讀情況,在全校隨機邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計同學(xué)們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:(1)共有名同學(xué)參與問卷調(diào)查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學(xué)生1500人,請估計該校學(xué)生一個月閱讀2本課外書的人數(shù)約為多少.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)圓錐的側(cè)面展開圖的特點作答.【詳解】A選項:是長方體展開圖.B選項:是圓錐展開圖.C選項:是棱錐展開圖.D選項:是正方體展開圖.故選B.【點睛】考查了幾何體的展開圖,注意圓錐的側(cè)面展開圖是扇形.2、B【解析】

先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.3、C【解析】

根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當?shù)姆椒ㄟM行求解是解題的關(guān)鍵.4、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.5、B【解析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.6、D【解析】

根據(jù)圖象可設(shè)二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.7、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關(guān)鍵在于對知識點的理解和把握.8、B【解析】

根據(jù)合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則對各選項依次進行判斷即可解答.【詳解】A.2a2+3a2=5a2,故本選項錯誤;B.(?)-2=4,正確;C.(a+b)(?a?b)=?a2?2ab?b2,故本選項錯誤;D.8ab÷4ab=2,故本選項錯誤.故答案選B.【點睛】本題考查了合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則,解題的關(guān)鍵是熟練的掌握合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則.9、B【解析】

先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。畧A周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補,并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】拋物線的對稱軸為:x=1,∴當x>1時,y隨x的增大而增大.∴若x1>x2>1

時,y1>y2

.故答案為>12、1【解析】試題分析:根據(jù)題意可知這是分式方程,x2答案為1.考點:分式方程的解法13、61【解析】分析:要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答,注意此題展開圖后螞蟻的爬行路線有兩種,分別求出,選取最短的路程.詳解:如圖①:AM2=AB2+BM2=16+(5+2)2=65;如圖②:AM2=AC2+CM2=92+4=85;如圖:AM2=52+(4+2)2=61.∴螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是:61.故答案為:61.點睛:此題主要考查了平面展開圖,求最短路徑,解決此類題目的關(guān)鍵是把長方體的側(cè)面展開“化立體為平面”,用勾股定理解決.14、540°【解析】

根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和15、先以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì),平移的性質(zhì)即可得到由△DEF得到△ABC的過程.【詳解】由題可得,由△DEF得到△ABC的過程為:先以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.(答案不唯一)故答案為:先以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【點睛】本題考查了坐標與圖形變化﹣旋轉(zhuǎn),平移,對稱,解題時需要注意:平移的距離等于對應(yīng)點連線的長度,對稱軸為對應(yīng)點連線的垂直平分線,旋轉(zhuǎn)角為對應(yīng)點與旋轉(zhuǎn)中心連線的夾角的大小.16、a3【解析】試題解析:x5÷x2=x3.考點:同底數(shù)冪的除法.17、1【解析】

作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質(zhì)求出∠B的度數(shù),根據(jù)正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標注方向角、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(1)11.【解析】

(1)根據(jù)正切的定義求出OA,證明△BAO∽△BEC,根據(jù)相似三角形的性質(zhì)計算;(1)求出直線AB的解析式,解方程組求出點D的坐標,根據(jù)三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.【詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點C的坐標為(﹣1,3),∴反比例函數(shù)的解析式為:;(1)設(shè)直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當D的坐標為(6,1),∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積=×6×3+×6×1=11.【點睛】此題考查的是反比例函數(shù)與一次函數(shù)的交點問題,掌握待定系數(shù)法求函數(shù)解析式的一般步驟、求反比例函數(shù)與一次函數(shù)的交點的方法是解題的關(guān)鍵.19、.【解析】試題分析:方程最簡公分母為,方程兩邊同乘將分式方程轉(zhuǎn)化為整式方程求解,要注意檢驗.試題解析:方程兩邊同乘,得:,整理解得:,經(jīng)檢驗:是原方程的解.考點:解分式方程.20、(1)且;(2),.【解析】

(1)根據(jù)一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;

(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【詳解】(1)∵.解得且.(2)∵為正整數(shù),∴.∴原方程為.解得,.【點睛】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.21、(Ⅰ)68°(Ⅱ)56°【解析】

(1)圓內(nèi)接四邊形的一個外角等于它的內(nèi)對角,利用圓內(nèi)接四邊形的性質(zhì)證明∠CED=∠A即可,(2)連接AE,在Rt△AEC中,先根據(jù)同圓中,相等的弦所對弧相等,再根據(jù)同圓中,相等的弧所對圓周角相等,求出∠EAC,最后根據(jù)直徑所對圓周是直角,利用直角三角形兩銳角互余即可解決問題.【詳解】(Ⅰ)∵四邊形ABED圓內(nèi)接四邊形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)連接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直徑,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°【點睛】本題主要考查圓周角定理、直徑的性質(zhì)、圓內(nèi)接四邊形的性質(zhì)等知識,解決本題的關(guān)鍵是靈活運用所學(xué)知識解決問題.22、(1);(2).【解析】

根據(jù)列表法或樹狀圖看出所有可能出現(xiàn)的結(jié)果共有多少種,再求出兩次取出小球上的數(shù)字相同的結(jié)果有多少種,根據(jù)概率公式求出該事件的概率.【詳解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(兩數(shù)相同)=.(2)P(兩數(shù)和大于1)=.【點睛】本題考查了利用列表法、畫樹狀圖法求等可能事件的概率.23、(1)y=(x>0);(2)S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應(yīng)的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數(shù)的解析式.

(2)由題意得P(t,),然后分別從當點P1在點B的左側(cè)時,S=t?(-3)=-3t+9與當點P2在點B的右側(cè)時,則S=(t-3)?=9-去

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論