陜西省武功縣2025屆九上數學期末復習檢測模擬試題含解析_第1頁
陜西省武功縣2025屆九上數學期末復習檢測模擬試題含解析_第2頁
陜西省武功縣2025屆九上數學期末復習檢測模擬試題含解析_第3頁
陜西省武功縣2025屆九上數學期末復習檢測模擬試題含解析_第4頁
陜西省武功縣2025屆九上數學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省武功縣2025屆九上數學期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.若x=﹣1是關于x的一元二次方程ax2+bx﹣2=0(a≠0)的一個根,則2019﹣2a+2b的值等于()A.2015 B.2017 C.2019 D.20222.一元二次方程配方為()A. B. C. D.3.方程的解是()A. B., C., D.4.《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余4.5尺;將繩子對折再量木條,木條剩余1尺,問木條長多少尺?”如果設木條長尺,繩子長尺,根據題意列方程組正確的是()A. B. C. D.5.從這九個自然數中任取一個,是的倍數的概率是().A. B. C. D.6.若△ABC∽△DEF,且△ABC與△DEF的面積比是,則△ABC與△DEF對應中線的比為()A. B. C. D.7.已知拋物線的解析式為y=(x-2)2+1,則這條拋物線的頂點坐標是().A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)8.下列成語描述的事件為隨機事件的是()A.守株待兔 B.水中撈月 C.甕中捉鱉 D.水漲船高9.下列圖案中,是中心對稱圖形的是()A. B.

C. D.10.如圖,一個幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A. B. C. D.二、填空題(每小題3分,共24分)11.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根,則m的值為______.12.已知二次函數的圖象與軸的一個交點為,則它與軸的另一個交點的坐標是__________.13.如圖,在平面直角坐標系中,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(4,1)在AB邊上,把△CDB繞點C旋轉90°,點D的對應點為點D′,則OD′的長為_________.14.二次函數y=ax2+bx+c(a、b、c為常數且a≠0)中的x與y的部分對應值如下表:x-2-1012345y50-3-4-30512給出了結論:(1)二次函數y=ax2+bx+c有最小值,最小值為-3;(2)當-<x<2時,y<0;(3)二次函數y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側.則其中正確結論是_________(填上正確的序號)15.已知二次函數的圖象如圖所示,有下列結論:,,;,,其中正確的結論序號是______16.若,則的值是______.17.在一個不透明的布袋中裝有紅色和白色兩種顏色的小球(除顏色以外沒有任何區(qū)別),隨機摸出一球,摸到紅球的概率是,其中白球6個,則紅球有________個.18.拋物線y=﹣3(x﹣1)2+2的開口向_____,對稱軸為_____,頂點坐標為_____.三、解答題(共66分)19.(10分)已知關于x的一元二次方程x2+2x+2k-5=0有兩個實數根.(1)求實數k的取值范圍.(2)若方程的一個實數根為4,求k的值和另一個實數根.(3)若k為正整數,且該方程的根都是整數,求k的值.20.(6分)如圖,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤6),那么:(1)當t為何值時,△QAP是等腰直角三角形?(2)當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?21.(6分)某商場以每件30元的價格購進一種商品,試銷中發(fā)現這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數關系m=162﹣3x.(1)請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數關系式.(2)商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.22.(8分)如圖,在中,點在斜邊上,以為圓心,為半徑作圓,分別與、相交于點、,連接,已知.(1)求證:是的切線;(2)若,,求劣弧與弦所圍陰影圖形的面積;(3)若,,求的長.23.(8分)(1)某學校“智慧方園”數學社團遇到這樣一個題目:如圖(1),在中,點在線段上,,,,,求的長.經過社團成員討論發(fā)現:過點作,交的延長線于點,通過構造就可以解決問題,如圖(2).請回答:______.(2)求的長.(3)請參考以上解決思路,解決問題:如圖(3),在四邊形中,對角線與相交于點,,,,,求的長.24.(8分)某駐村扶貧小組實施產業(yè)扶貧,幫助貧困農戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經過市場調查發(fā)現,某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數關系如下圖所示:(1)求y與x的函數解析式(也稱關系式);(2)求這一天銷售西瓜獲得的利潤的最大值.25.(10分)如圖,二次函數的圖象經過點與.求a,b的值;點C是該二次函數圖象上A,B兩點之間的一動點,橫坐標為,寫出四邊形OACB的面積S關于點C的橫坐標x的函數表達式,并求S的最大值.26.(10分)如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

參考答案一、選擇題(每小題3分,共30分)1、A【分析】將x=﹣1代入方程得出a﹣b=2,再整體代入計算可得.【詳解】解:將x=﹣1代入方程,得:a﹣b﹣2=0,則a﹣b=2,∴原式=2019﹣2(a﹣b)=2019﹣2×2=2019﹣4=2015故選:A.【點睛】本題主要考查一元二次方程的解,解題的關鍵是掌握方程的解的概念及整體代入思想的運算.2、A【分析】方程移項變形后,利用完全平方公式化簡得到結果,即可做出判斷.【詳解】解:x2-6x-4=0,

x2-6x=4,

x2-6x+32=4+32,

(x-3)2=13,

故選:A.【點睛】此題考查了解一元二次方程-配方法.配方法的一般步驟:(1)把常數項移到等號的右邊;

(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.3、B【分析】用因式分解法求解即可得到結論.【詳解】∵x2﹣3x=0,∴x(x﹣3)=0,則x=0或x﹣3=0,解得:,.故選:B.【點睛】本題考查了解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解答本題的關鍵.4、A【解析】本題的等量關系是:木長繩長,繩長木長,據此可列方程組即可.【詳解】設木條長為尺,繩子長為尺,根據題意可得:.故選:.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.5、B【解析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.因此,∵1~9這九個自然數中,是偶數的數有:2、4、6、8,共4個,∴從1~9這九個自然數中任取一個,是偶數的概率是:.故選B.6、D【分析】根據相似三角形的面積比等于相似比的平方,再結合相似三角形的對應中線的比等于相似比解答即可.【詳解】∵△ABC∽△DEF,△ABC與△DEF的面積比是,∴△ABC與△DEF的相似比為,∴△ABC與△DEF對應中線的比為,故選D.【點睛】考查的是相似三角形的性質,相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方;相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.7、B【解析】根據頂點式y(tǒng)=(x-h)2+k的頂點為(h,k),由y=(x-2)2+1為拋物線的頂點式,頂點坐標為(2,1).

故選:B.8、A【分析】根據事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A.守株待兔是隨機事件,故A符合題意;B.水中撈月是不可能事件,故B不符合題意;C.甕中捉鱉是必然事件,故C不符合題意;D.水漲船高是必然事件,故D不符合題意;故選A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、D【分析】根據中心對稱圖形的定義逐一進行分析判斷即可.【詳解】A、不是中心對稱圖形,故不符合題意;B、不是中心對稱圖形,故不符合題意;C、不是中心對稱圖形,故不符合題意;D、是中心對稱圖形,故符合題意,故選D.【點睛】本題考查了中心對稱圖形的識別,熟練掌握中心對稱圖形的概念是解題的關鍵.10、D【分析】這個幾何體的側面是以底面圓周長為長、圓柱體的高為寬的矩形,根據矩形的面積公式計算即可.【詳解】根據三視圖可得幾何體為圓柱,圓柱體的側面積=底面圓的周長圓柱體的高=故答案為:D.【點睛】本題考查了圓柱體的側面積問題,掌握矩形的面積公式是解題的關鍵.二、填空題(每小題3分,共24分)11、-1【分析】根據關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.12、【分析】確定函數的對稱軸=-2,即可求出.【詳解】解:函數的對稱軸=-2,則與軸的另一個交點的坐標為(-3,0)故答案為(-3,0)【點睛】此題主要考查了拋物線與x軸的交點和函數圖像上點的坐標的特征,熟練掌握二次函數與坐標軸的交點、二次函數的對稱軸是解題的關鍵.13、3或【分析】由題意,可分為逆時針旋轉和順時針旋轉進行分析,分別求出點OD′的長,即可得到答案.【詳解】解:因為點D(4,1)在邊AB上,

所以AB=BC=4,BD=4-1=3;

(1)若把△CDB順時針旋轉90°,

則點D′在x軸上,OD′=BD=3,

所以D′(3,0);∴;

(2)若把△CDB逆時針旋轉90°,

則點D′到x軸的距離為8,到y(tǒng)軸的距離為3,

所以D′(3,8),∴;

故答案為:3或.【點睛】此題主要考查了坐標與圖形變化——旋轉,考查了分類討論思想的應用,解答此題的關鍵是要注意分順時針旋轉和逆時針旋轉兩種情況.14、(2)(3)【分析】根據表格數據求出二次函數的對稱軸為直線x=1,然后根據二次函數的性質對各小題分析判斷即可得解.【詳解】由表格數據可知,二次函數的對稱軸為直線x=1,所以,當x=1時,二次函數y=ax2+bx+c有最小值,最小值為?4;故(1)小題錯誤;根據表格數據,當?1<x<3時,y<0,所以,?<x<2時,y<0正確,故(2)小題正確;二次函數y=ax2+bx+c的圖象與x軸有兩個交點,分別為(?1,0)(3,0),它們分別在y軸兩側,故(3)小題正確;綜上所述,結論正確的是(2)(3)共2個.故答案為:(2)(3).【點睛】本題考查了二次函數的最值,拋物線與x軸的交點,仔細分析表格數據,熟練掌握二次函數的性質是解題的關鍵.15、【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】由圖象可知:拋物線開口方向向下,則,對稱軸直線位于y軸右側,則a、b異號,即,拋物線與y軸交于正半軸,則,,故正確;對稱軸為,,故正確;由拋物線的對稱性知,拋物線與x軸的另一個交點坐標為,所以當時,,即,故正確;拋物線與x軸有兩個不同的交點,則,所以,故錯誤;當時,,故正確.故答案為.【點睛】本題考查了考查了圖象與二次函數系數之間的關系,二次函數系數符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數確定.16、【分析】根據合比性質:,可得答案.【詳解】由合比性質,得,故答案為:.【點睛】本題考查了比例的性質,利用合比性質是解題關鍵.17、1【分析】設紅球有x個,根據題意列出方程,解方程并檢驗即可.【詳解】解:設紅球有x個,由題意得:,解得,經檢驗,是原分式方程的解,所以,紅球有1個,故答案為:1.【點睛】本題主要考查根據概率求數量,掌握概率的求法是解題的關鍵.18、下直線x=1(1,2)【分析】根據y=a(x-h)2+k的性質即可得答案【詳解】∵-3<0,∴拋物線的開口向下,∵y=﹣3(x﹣1)2+2是二次函數的頂點式,∴該拋物線的對稱軸是直線x=1,頂點坐標為(1,2),故答案為:下,直線x=1,(1,2)【點睛】本題主要考查了二次函數的性質,熟練掌握二次函數的三種形式及性質是解題關鍵.三、解答題(共66分)19、(1)k≤1;(2)k的值為-,另一個根為-2;(1)k的值為1或1.【分析】(1)根據一元二次方程根的判別式列不等式即可得答案;(2)根據一元二次方程根與系數的關系即可得答案;(1)由(1)可得k≤1,根據k為正整數可得k=1,k=2或k=1,分別代入方程,求出方程的根,根據該方程的根都是整數即可得答案.【詳解】(1)∵關于x的一元二次方程x2+2x+2k﹣5=0有兩個實數根,∴△=22﹣4×1×(2k﹣5)=﹣8k+24≥0,解得:k≤1,∴k的取值范圍是k≤1.(2)設方程的另一個根為m,∴4+m=-2,解得:m=-2,∴2k﹣5=4×(-2)∴k=-,∴k的值為-,另一個根為-2.(1)∵k為正整數,且k≤1,∴k=1或k=2或k=1,當k=1時,原方程為x2+2x﹣1=0,解得x1=﹣1,x2=1,當k=2時,原方程為x2+2x-1=0,解得x1=-1+,x2=-1-,(舍去)當k=1時,原方程為x2+2x+1=0,解得x1=x2=-1,∴k的值為1或1.【點睛】本題考查一元二次方程根的判別式及根與系數的關系,一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程沒有實數根;若方程的兩個實數根為x1、x2,那么,x1+x2=,x1·x2=;正確運用一元二次方程的根的判別式并熟練掌握韋達定理是解題關鍵.20、(1)t=2s;(2)t=1.2s或3s.【分析】(1)根據等腰三角形的性質可得QA=AP,從而可以求得結果;(2)分與兩種情況結合相似三角形的性質討論即可.【詳解】(1)由QA=AP,即6-t=2t,得t=2(秒);(2)當時,△QAP~△ABC,則,解得t=1.2(秒)當時,△QAP~△ABC,則,解得t=3(秒)∴當t=1.2或3時,△QAP~△ABC.21、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達到500元.【解析】(1)此題可以按等量關系“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,并由售價大于進價,且銷售量大于零求得自變量的取值范圍.(2)根據(1)所得的函數關系式,利用配方法求二次函數的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達到500元.【點睛】本題考查了二次函數在實際生活中的應用,解答本題的關鍵是根據等量關系:“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,另外要熟練掌握二次函數求最值的方法.22、(1)見解析;(2);(3)【分析】(1)連接,利用圓的半徑相等及已知條件證明,再根據直角三角形兩銳角互余得到,再根據平角定義即可得到結論;(2)連接,作于,根據及直角三角形的性質求出BD=2,根據垂徑定理及三角函數求出,OF,再根據30角所對的直角邊等于斜邊的一半求出OB,即可利用扇形面積減去三角形的面積求出陰影部分的面積;(3)先證明求出AB,再根據勾股定理求出半徑,即可求得AE的長.【詳解】(1)證明:連接,如圖1所示:∵,∴,∵,∴,在中,,∴,∴,則為的切線;(2)連接,作于,如圖2所示:∵,,∴,∴,∵,,∴,,∴,∵,∴,,∴,∴劣弧與弦所圍陰影部分的面積扇形的面積的面積;(3)∵,,∴,∴,∴,即,解得:,或(舍去),∴,∴,∵,∴,∴,∵,∴在中,,∴設的半徑為,則,∴,∴,∴.【點睛】此題是圓的綜合題,考查圓的性質,垂徑定理,勾股定理,三角形相似的判定及性質定理,弓形面積,綜合運用知識點,總結解題的方法.23、(1)75°;(2);(3).【分析】(1)根據平行線的性質可得出∠ADB=∠OAC=75°;(2)結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質可求出OD的值,進而可得出AD的值,由三角形內角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB的長;(3)過點B作BE∥AD交AC于點E,同(1)可得出AE的長.在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】(1)∵BD∥AC,∴∠ADB=∠OAC=75°.(2)∵∠BOD=∠COA,∠ADB=∠OAC,∴△BOD∽△COA,∴.又∵AO,∴ODAO,∴AD=AO+OD=.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=.(3)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=,∴EO,∴AE=.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即()2+BE2=(2BE)2,解得:BE=,∴AB=AC=,AD=1.在Rt△CAD中,AC2+AD2=CD2,即,解得:CD=.【點睛】本題考查了相似三角形的判定與性質、等腰三角形的判定與性質、勾股定理以及平行線的性質,解答本題的關鍵是:(2)利用相似三角形的性質求出OD的值;(3)利用勾股定理求出BE、CD的長度.24、(1)y與x的函數解析式為;(2)這一天銷售西瓜獲得利潤的最大值為1250元.【解析】(1)當6x≤10時,由題意設y=kx+b(k=0),利用待定系數法求得k、b的值即可;當10<x≤12時,由圖象可知y=200,由此即可得答案;(2))設利潤為w元,當6≦x≤10時,w=-200+1250,根據二次函數的性質可求得最大值為1250;當10<x≤12時,w=200x-1200,由一次函數的性質結合x的取值范圍可求得w的最大值為1200,兩者比較即可得答案.【詳解】(1)當6x≤10時,由題意設y=kx+b(k=0),它的圖象經過點(6,1000)與點(10,200),∴,解得,∴當6x≤10時,y=-200x+2200

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論