2023屆陜西省西安市第六十六中學數(shù)學高三上期末達標檢測模擬試題含解析_第1頁
2023屆陜西省西安市第六十六中學數(shù)學高三上期末達標檢測模擬試題含解析_第2頁
2023屆陜西省西安市第六十六中學數(shù)學高三上期末達標檢測模擬試題含解析_第3頁
2023屆陜西省西安市第六十六中學數(shù)學高三上期末達標檢測模擬試題含解析_第4頁
2023屆陜西省西安市第六十六中學數(shù)學高三上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.2.已知復數(shù)滿足,則的最大值為()A. B. C. D.63.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.4.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.5.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.6.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.7.函數(shù)的大致圖象為()A. B.C. D.8.若,則實數(shù)的大小關(guān)系為()A. B. C. D.9.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.已知隨機變量服從正態(tài)分布,,()A. B. C. D.11.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]12.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,已知A0,a,B3,a+414.函數(shù)的定義域為,其圖象如圖所示.函數(shù)是定義域為的奇函數(shù),滿足,且當時,.給出下列三個結(jié)論:①;②函數(shù)在內(nèi)有且僅有個零點;③不等式的解集為.其中,正確結(jié)論的序號是________.15.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____16.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.18.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.19.(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.21.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.22.(10分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應(yīng)用,屬于中檔題2、B【解析】

設(shè),,利用復數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數(shù)模的最大值,其實本題可以利用不等式來解決.3、A【解析】

設(shè),則MF的中點坐標為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設(shè),∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構(gòu)造的齊次方程.4、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.5、A【解析】

根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.6、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.7、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.8、A【解析】

將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大?。蝗粽鏀?shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.9、A【解析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.10、B【解析】

利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.11、D【解析】

設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.12、D【解析】

首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.二、填空題:本題共4小題,每小題5分,共20分。13、(-53,【解析】

求出AB的長度,直線方程,結(jié)合△ABC的面積為5,轉(zhuǎn)化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設(shè)△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應(yīng)該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點睛】本題主要考查直線與圓的位置關(guān)系的應(yīng)用,求出直線方程和AB的長度,轉(zhuǎn)化為圓心到直線的距離是解決本題的關(guān)鍵.14、①③【解析】

利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進而可判斷函數(shù)在內(nèi)的零點個數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因為函數(shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點為和.因為函數(shù)的周期為,所以函數(shù)在內(nèi)有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點等知識點,考查學生分析問題的能力和數(shù)形結(jié)合能力,屬于中等題.15、2025【解析】

利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.16、【解析】

根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導公式的應(yīng)用,綜合性強,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①當時,在上單調(diào)遞減,在上單調(diào)遞增;②當時,在上單調(diào)遞增;(2).【解析】

(1)求出函數(shù)的定義域和導函數(shù),,對討論,得導函數(shù)的正負,得原函數(shù)的單調(diào)性;(2)法一:由得,分別運用導函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調(diào)遞減,在上單調(diào)遞增;②當時,恒成立,在上單調(diào)遞增;(2)法一:由得,令(),則,在上單調(diào)遞減,,,即,令,則,在上單調(diào)遞增,,在上單調(diào)遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調(diào)遞減,,,即,當時,由(Ⅰ)知在上單調(diào)遞增,恒成立,滿足題意當時,令,則,所以在上單調(diào)遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數(shù)的函數(shù)的單調(diào)性的討論,不等式恒成立時,求解參數(shù)的范圍,屬于難度題.18、(1)見解析;(2).【解析】

(1)取的中點,連接、,推導出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點,連接、,、分別為、的中點,則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,平面,平面,,,,平面,即就是到平面的距離,也就是點到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是中檔題.19、(1),;(2).【解析】

(1)令可求得的值,令,由得出,兩式相減可推導出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質(zhì)可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數(shù)列是首項為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.20、(1)見解析(2)(3)【解析】

(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當時,,故函數(shù)在區(qū)間上單調(diào)遞減,當時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論