海南省儋州市第五中學2023-2024學年中考數(shù)學全真模擬試題含解析_第1頁
海南省儋州市第五中學2023-2024學年中考數(shù)學全真模擬試題含解析_第2頁
海南省儋州市第五中學2023-2024學年中考數(shù)學全真模擬試題含解析_第3頁
海南省儋州市第五中學2023-2024學年中考數(shù)學全真模擬試題含解析_第4頁
海南省儋州市第五中學2023-2024學年中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

海南省儋州市第五中學2023-2024學年中考數(shù)學全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.是兩個連續(xù)整數(shù),若,則分別是().A.2,3 B.3,2 C.3,4 D.6,82.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.93.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對4.-2的絕對值是()A.2 B.-2 C.±2 D.5.對假命題“任何一個角的補角都不小于這個角”舉反例,正確的反例是()A.∠α=60°,∠α的補角∠β=120°,∠β>∠αB.∠α=90°,∠α的補角∠β=90°,∠β=∠αC.∠α=100°,∠α的補角∠β=80°,∠β<∠αD.兩個角互為鄰補角6.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠07.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.8.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.9.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.210.一次函數(shù)y=2x+1的圖像不經(jīng)過(

)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限二、填空題(共7小題,每小題3分,滿分21分)11.關于x的方程kx2﹣(2k+1)x+k+2=0有實數(shù)根,則k的取值范圍是_____.12.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.13.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.14.已知二次函數(shù)與一次函數(shù)的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.15.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于______.16.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.17.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學記數(shù)法表示為_____.三、解答題(共7小題,滿分69分)18.(10分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:七年級(1)班學生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.19.(5分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.20.(8分)由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產(chǎn)品.某公司經(jīng)銷一種空氣凈化器,每臺凈化器的成本價為200元.經(jīng)過一段時間的銷售發(fā)現(xiàn),每月的銷售量y(臺)與銷售單價x(元)的關系為y=﹣2x+1.(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數(shù)關系式;(2)若要使每月的利潤為40000元,銷售單價應定為多少元?(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?21.(10分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.22.(10分)三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.23.(12分)某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數(shù)量至多減少多少套?24.(14分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù),可得答案.【詳解】根據(jù)題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數(shù)的大小,明確是解題關鍵.2、B【解析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關鍵.3、B【解析】

解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.4、A【解析】

根據(jù)絕對值的性質(zhì)進行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.【點睛】此題考查絕對值,難度不大5、C【解析】熟記反證法的步驟,然后進行判斷即可.

解答:解:舉反例應該是證明原命題不正確,即要舉出不符合敘述的情況;

A、∠α的補角∠β>∠α,符合假命題的結(jié)論,故A錯誤;

B、∠α的補角∠β=∠α,符合假命題的結(jié)論,故B錯誤;

C、∠α的補角∠β<∠α,與假命題結(jié)論相反,故C正確;

D、由于無法說明兩角具體的大小關系,故D錯誤.

故選C.6、C【解析】

分式分母不為0,所以,解得.故選:C.7、B【解析】

觀察圖形,利用中心對稱圖形的性質(zhì)解答即可.【詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【點睛】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關鍵.8、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質(zhì),解題的關鍵是掌握全等三角形的判定與性質(zhì)、矩形的性質(zhì)、勾股定理等知識點.9、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.10、D【解析】

根據(jù)一次函數(shù)的系數(shù)判斷出函數(shù)圖象所經(jīng)過的象限,由k=2>0,b=1>0可知,一次函數(shù)y=2x+1的圖象過一、二、三象限.另外此題還可以通過直接畫函數(shù)圖象來解答.【詳解】∵k=2>0,b=1>0,∴根據(jù)一次函數(shù)圖象的性質(zhì)即可判斷該函數(shù)圖象經(jīng)過一、二、三象限,不經(jīng)過第四象限.故選D.【點睛】本題考查一次函數(shù)圖象與系數(shù)的關系,解決此類題目的關鍵是確定k、b的正負.二、填空題(共7小題,每小題3分,滿分21分)11、k≤.【解析】

分k=1及k≠1兩種情況考慮:當k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關鍵.12、75°【解析】【分析】根據(jù)絕對值及偶次方的非負性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點睛】本題考查了特殊角的三角函數(shù)值及非負數(shù)的性質(zhì),解答本題的關鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.13、或﹣.【解析】

試題分析:當點F在OB上時,設EF交CD于點P,可求點P的坐標為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點睛】考點:動點問題.14、x<-2或x>1【解析】試題分析:根據(jù)函數(shù)圖象可得:當時,x<-2或x>1.考點:函數(shù)圖象的性質(zhì)15、【解析】

此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點睛】考核知識點:二次函數(shù)綜合題.熟記性質(zhì),數(shù)形結(jié)合是關鍵.16、110【解析】試題解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質(zhì)、三角形外角的性質(zhì)點評:本題主要考查了等腰三角形的性質(zhì)、三角形外角的性質(zhì).等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內(nèi)角之和.17、【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學記數(shù)法表示為,故答案為:.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、48;105°;2【解析】試題分析:根據(jù)B的人數(shù)和百分比求出總?cè)藬?shù),根據(jù)D的人數(shù)和總?cè)藬?shù)的得出D所占的百分比,然后得出圓心角的度數(shù),根據(jù)總?cè)藬?shù)求出C的人數(shù),然后補全統(tǒng)計圖;記A類學生擅長書法的為A1,擅長繪畫的為A2,根據(jù)題意畫出表格,根據(jù)概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補全圖形如下:(2)記A類學生擅長書法的為A1,擅長繪畫的為A2,則可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考點:統(tǒng)計圖、概率的計算.19、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】

(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;

(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;

(3)首先利用相似三角形的性質(zhì)表示出BD,PM的長,進而根據(jù)三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結(jié)論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【點睛】本題考查相似三角形的性質(zhì)和判定,解題的關鍵是掌握相似三角形的性質(zhì)和判定.20、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利潤為40000元,銷售單價應定為300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,當x=250時y=﹣2×2502+1400×250﹣200000=25000;故最高利潤為45000元,最低利潤為25000元.【解析】試題分析:(1)根據(jù)銷售利潤=每天的銷售量×(銷售單價-成本價),即可列出函數(shù)關系式;(2)令y=40000代入解析式,求出滿足條件的x的值即可;(3)根據(jù)(1)得到銷售利潤的關系式,利用配方法可求最大值.試題解析:(1)由題意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利潤為40000元,銷售單價應定為300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,當x=250時y=-2×2502+1400×250-200000=25000;故最高利潤為45000元,最低利潤為25000元.21、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】

(1)將的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;

(2)根據(jù)的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據(jù)平行四邊形的性質(zhì),得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,

∵C(0,-3)

∴設P1(x,-3)

∴x2-x-3=-3,解得x1=0,x2=3,

∴P1(3,-3);

②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,

∵C(0,-3)

∴設P(x,3),

∴x2-x-3=3,

x2-3x-8=0

解得x=或x=,

此時存在點P2(,3)和P3(,3),

綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)、二次函數(shù)的應用等知識,綜合性強,難度較大.22、(1);(2)【解析】

(1)用樹狀圖分3次實驗列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;

(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論